Objective To study the effect of chitosan (CS) mediated insul in-l ike growth factor 1 gene (igf-1) transfection on the repair of articular cartilage defect. Methods Twelve 3-month-old healthy male rabbits weighting 2.0-2.5 kg were randomly divided into 2 primary groups, control and intervention groups (n=6 per group). Control group was further divided into normal control (left knee) and normal saline (NS) control (right knee) groups. While, intervention group was divided into CS (left knee) and CS/igf-1 intervention (right knee) groups. Cartilage defects were created in the knee joints except normalcontrol. Intra-articular injections of CS/igf-1 complex was administrated 2 times a week for 4 weeks in CS/igf-1 interventiongroup, 0.5 mL CS in CS intervention group, and 0.5 mL sal ine solution in normal control and sal ine control groups. At 28days after treatments, the cartilage samples were collected for histological observation and collagen type II and aggrecan mRNA evaluation. Results HE staining and toluidine blue staining revealed that CS/igf-1 and CS intervention could significantly stimulated cartilage regeneration accompanied with fibrosis and inflammatory cell infiltration, however, CS/igf-1 treatment resulted in the best repair of cartilage defect. In contrast, sal ine control group only showed fibrous tissue prol iferation and inflammatory cell infiltration without significant cartilage repairing. In terms of collagen type II and aggrecan gene expression, significant differences were observed in each pairwised comparison among 4 groups in the order of CS/igf-1 gt; CS gt; NS gt; normal control (P lt; 0.05). Conclusion In situ CS/ifg-1 complex transfection can enhance the formation of mesochondrium by upregulating collagen type II or aggrecan expression, which might enhance the repair of articular cartilage defect.
Objective To determine the effect of insulin-like growth factor-1 (IGF-1) on angiogenesis in mouse breast cancer model of lower and normal serum IGF-1 levels after using angiogenesis inhibitor ginsenoside Rg3 (GS Rg3). Methods The breast cancer models were established in control mice and liver specific IGF-1 deficient (LID) mice by feeding DMBA and were treated with GS Rg3. Vascular endothelial growth factor (VEGF) and F8-RAg were detected by immunohistochemical method in breast cancer tissues. IGF-1 gene and angiogenesis relating genes were detected by gene chip in breast cancer and normal breast tissue. Results The incidence rate of breast cancer in LID mice was lower than that in control mice (P<0.05). VEGF expression and microvessel density of LID mice were lower than those in control mice (P<0.05). Compared to the control mice, IGF-1, FGF-1, TGF-β1 and HGF genes were increased, and FGFR-2, PDGF-A and PDGF-B genes were decreased in breast cancer of LID mice. After GS Rg3 treatment, VEGFa, EGF, EGFR, PDGF-A and FGFR-2 genes were increased, IGF-1 and TGF-β1 genes were decreased in breast cancer of LID mice compared with the control mice. Conclusion IGF-1 may be involved in mouse breast cancer progression and associated with the growth of blood vessels. Angiogenesis inhibitor may play an antitumor role by IGF-1 and TGF-β1.