west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Retinal excitotoxicity" 1 results
  • The m5C-methylated epi-transcriptomic analysis in a rat model of N-methyl-D-aspartate-induced retinal excitotoxicity

    Objective To study the differential expression profiling of the transcripts modified by m5C methylation in a rat model of N-methyl-D-aspartate (NMDA)-induced retinal excitotoxicity. MethodsA total of 65 Sprague Dawley male rats aged 7-8 weeks were randomly divided into two groups: normal control group and NMDA group. The right eye (model eye) of rats in the NMDA group were injected with 50.0 mmol/L of NMDA 3 μl in the vitreous cavity, while in the normal control group, equal volume of normal saline was injected into the vitreous cavity. After 1 week of the injection, the optic nerve conduction function of rats was detected by visual evoked potential. The whole structure of rat retina was observed by hematoxylin-eosin staining, and the thickness of each retinal layer and the number of retinal ganglion cell layer were detected. The number of β3 tubulin immunofluorescence positive cells was detected by immunofluorescence staining on retinal stretched preparation. Total RNA was extracted from the retinas of normal control group and NMDA group, and high-throughput m5C modified RNA was sequenced, and bioinformatics analysis was performed. The relative expression levels of SLFN3, PLXNB3, CD36 and HIC2 mRNA in retina were detected by real-time quantitative polymerase chain reaction. The comparison between the two groups was performed using an unpaired t test. ResultsThe P1 latency of control group and NMDA group were (117.86±6.48) and (148.46±3.78) ms, and the amplitudes were (42.57±2.41) and (8.68±0.63) μV, respectively. Compared with the normal control group, the latency period was prolonged and the amplitude was significantly decreased in the NMDA group, with statistical significance (P<0.001). In normal control group, retinal ganglion cells (RGC) were uniformly arranged with large round nuclei. In NMDA group, the volume of retinal RGC was atrophied and the number of RGC was reduced. The total retinal thickness in the control group and NMDA group was (207.51±12.76) μm and (187.51±12.54) μm, respectively. The number of β3 tubulin positive cells was 79.86±6.56 and 29.36±2.16, respectively. Compared with normal control group, the total retinal thickness and the number of β3 tubulin positive cells in NMDA group were decreased, with statistical significance (P<0.001). Compared with the control group, 576 differentially expressed m5C mRNA were screened in the NMDA group, among which 230 up-regulated and 346 down-regulated genes were detected, respectively. The results of biological information analysis showed that compared with the control group, the upregulated m5C mRNA in the NMDA group was mainly involved in biological processes such as perception and cell-cell adhesion, and was mainly concentrated in the cytokine-cytokine receptor interaction and neural active ligand-receptor interaction pathway. The biological processes in which down-regulated m5C mRNA was mainly involved in biological processes such as G-protein-coupled receptor signaling pathway and cell communication, which were mainly concentrated in primary immune deficiency pathway and neural active ligand-receptor interaction pathway. Real-time quantitative polymerase chain reaction detection results showed that compared with the normal control group, the relative expression levels of SLFN3 and PLXNB3 mRNA in the retina of rats in NMDA group were significantly increased, while the relative expression levels of CD36 and HIC2 mRNA were significantly decreased, with statistical significance (P<0.05). ConclusionIn NMDA induced retinal excitatory toxicity rat models, m5C modified retinal transcriptome showed abnormal expression.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content