Objective To observe the inhibition of SARS-CoV-2 spike protein (S-protein) on the proliferation of human retinal pigment epithelium (RPE) cells. MethodsSARS-CoV-2 S-protein gene fragment expression plasmid (p3xflag-S) was constructed and transfected into human RPE, HEK293 cells. DNA sequencing was used for identification, and the expression of Flag-S was detected by Western blot. HEK293 cells were divided into the cells 1, 2, 3 and 4 and transfected with GFP11 plasmid and vector, GFP1-10plasmid and vector, transfected with GFP11 and pCMV-HA-ACE2 plasmid, GFP1-10 and p3xflag-S plasmid. Cell 1 was co-cultured with cell 2 (control group 1), cell 2 with cell 3 (control group 2), cell 3 with cell 4 (observation group), and cell 1 mixed with cells 2, 3 and 4 (control group 3). Bright-field microscopy and fluorescence microscopy were used to observe cell fusion. RPE cells were divided into control group and overexpression S-protein group. The cell cycle was detected by flow cytometry; the cell proliferation level was detected by Counting Kit 8 (CCK-8); and the S-protein expression level in RPE cells was detected by Western blot. The Student’s t-test was performed for comparison between groups. ResultsDNA sequence assay showed that S-protein cDNA was fused with flag-tagged protein. Western blot assay showed thatS-protein-related expression was elevated in transfected HEK293 cells compared with untransfected p3xflag-S cells. Large, multinucleated fused cell clusters were visible under bright-field microscopy; multiple nuclear with distinct green fluorescence were visible in the fused cells under fluorescence microscopy. Western blot assay showed elevated S-protein-related expression in transfected p3xflag-S plasmid RPE cells compared to untransfected p3xflag-S plasmid RPE cells. CCK-8 results showed that the proliferative capacity of RPE cells in the S-protein overexpression group was significantly reduced compared with the control group, with statistically significant differences (t=22.70, 16.75, 23.38; P<0.000 1). The results of flow cytometry showed that the G1 phase cells in the control and overexpression S-protein groups were 41.1% and 67.0%, respectively; compared with the control group, the G1 phase cells in the overexpression S-protein group were significantly higher, and the difference was statistically significant (t=4.76, P=0.018). The apoptosis rate was significantly increased in the S-protein overexpression group compared with the control group, and the difference was statistically significant (t=4.91, P=0.008). ConclusionOverexpression of the SARS-CoV-2 spike protein reduced the proliferation of human RPE cells.
Objective To observe the effect of bone forming protein 4 (BMP4) on the proliferation and migration of human retinal pigment epithelium (RPE) cells under oxidative stress, and to preliminarily explore its effect on epithelial-mesenchymal transition (EMT) of RPE cells. MethodsHuman RPE cells cultured in vitro were divided into normal group, pure 4-hydroxynonenal (HNE) group (4-HNE group), 4-HNE+NC group and 4-HNE+ small interfering BMP (siBMP4) group. The effect of 4-HNE on the proliferation of RPE cells was detected by thiazole blue colorimetry. The effects of 4-HNE and BMP4 on cell migration were determined by cell scratch test. The expression of BMP4 was detected by immunofluorescence staining, Western blot and real-time quantitative polymerase chain reaction. The transfection efficiency of siBMP4 was observed by fluorescence microscopy. Mitochondrial reactive oxygen species (MitoSOX) were detected by flow cytometry. The expression of EMT markers E-cadherin and Fibronection were detected by immunofluorescence assay. t-test was used for comparison between the two groups, and one-way analysis of variance was used for comparison between the three groups. ResultsCompared with normal group, cell proliferation and migration ability of 4-HNE group were significantly enhanced, with statistical significance (t=21.619, 24.469; P<0.05). The expression of BMP4 in cells was significantly increased, and the difference was statistically significant (t=19.441, P<0.05). The relative expression levels of BMP4 mRNA and protein were also significantly increased, with statistical significance (t=26.163, 37.163; P<0.05). After transfection with siBMP4 for 24 h, the transfection efficiency of BMP4 in RPE cells was>90%. Compared with 4-HNE group and 4-HNE+NC group, the relative expression levels of BMP4 protein (F=27.241), mRNA (F=36.943), cell mobility (F=46.723) and MitoSOX expression levels (F=39.721) in normal group and 4-HNE+siBMP4 group were significantly decreased. The differences were statistically significant (P<0.05). The epithelial marker E-cadherin increased significantly, while the mesenchymal marker Fibronection decreased significantly, with statistical significance (F= 51.722, 45.153; P<0.05). ConclusionsBMP4 inhibits RPE proliferation and migration under oxidative stress. BMP4 is involved in inducing EMT in RPE cells.