Objective To evaluate the correlation between antiphospholipid (APLA) antibodies and retinal vein occlusion (RVO). Methods A computerized search was conducted in the Pubmed, Chinese Biological Medicine Database, China National Knowledge Infrastructure, VIP database, Wanfang Database combined with manually searching of literature reference proceedings. The search time was ranged from establishment of each database to August 1st, 2012. After the data extraction, quality of RCT was assessed. The meta analysis was performed by Stata 11.0. Results In total, 12 case-control studies (1324 subjects) that fulfilled the eligibility criteria were included in the meta-analysis involving 505 patients in RVO group and 819 subjects in control group. The odds ratio (OR) and 95% confidence interval (CI) of APLA, anticardiolipin antibodies (ACA), lupus coagulation inhibitor and RVO were 5.01 and 3.33 - 7.53,4.38 and 2.38 - 8.05, 1.72 and 0.73 - .88, 6.02 and 2.06 - 17.63, respectively. The OR and 95% CI of APLA, ACA, lupus coagulation inhibitor and branch RVO were 4.22 and 1.67 - 10.63, 3.69 and 1.32 - 10.32, 2.07 and 0.79 - 5.41, respectively. Conclusions APLA may increase the rick of RVO, especially ACA has a prediction function to RVO. It is necessary to screening for APLA in RVO patients.
Objective To observe the levels of vascular endothelial growth factor (VEGF), interleukin-6 (IL-6) and monocyte chemotactic protein-1 (MCP-1) in aqueous humor of patients with macular edema secondary to central retinal vein occlusion (CRVO). Methods Forty eyes of 40 consecutive patients with macular edema secondary to CRVO (CRVO group) were enrolled in this study. The patients included 25 males and 15 females. The patient age ranged from 38 to 76 years. The control group was 20 patients with senile cataract who underwent phacoemulsification, including 10 males and 10 females. The levels of VEGF165, VEGF165b, IL-6 and MCP-1 in aqueous humor were determined by enzymelinked immunosorbent assay. The correlation of VEGF, and IL-6, and MCP-1 were analyzed. Results The median aqueous level of VEGF165, IL-6 and MCP-1 were 1089.0, 165.6, 1253.0 pg/ml respectively in CRVO group, which were higher than the control group's results (168.2, 4.7, 216.4 pg/ml respectively), the differences were statistically significant (Z=-4.549, -6.008, -5.343;P<0.001). The VEGF165b in CRVO group and control group were 834.0, 915.9 pg/ml respectively, the difference was not statistically significant (Z=-0.207,P>0.05). The ratio of VEGF165b to VEGF165 in CRVO group and control group were 2.71, 7.28 respectively, the difference was statistically significant (t=-3.007,P<0.05). There was a highly positive correlation between IL-6 and VEGF in CRVO group (r=0.526,P=0.001) and also mild positive correlation in control group (r=0.425,P=0.070). No correlation between MCP-1 and VEGF was observed in both groups (CRVO group: r=0.211,P>0.05. Control group: r=-0.019,P>0.05). Conclusions VEGF165, IL-6 and MCP-1 levels were increased in CRVO patients while the VEGF165b was normal. The ratio between VEGF165b and VEGF165 in aqueous humor of patients with macular edema secondary to CRVO was decreased.
Objective To observe the serum lipid level of patients with branch retinal vein occlusion (BRVO). Methods A total of 71 BRVO patients (BRVO group) were enrolled in this study. The patients included 31 males and 40 females, with an average age of (52.75plusmn;10.2) years. All the patients were examined for visual acuity, slit lamp ophthalmoscopy combine with preset lens, fundus color photography and fundus fluorescein angiography (FFA) examination. Seventy-two age and sex matched normal subjects were enrolled in this study as control group. The subjects included 32 males and 40 females, with an average age of (53.10plusmn;9.5) years. The BRVO and control group were divided into four subgroup which including age with <40 years, 40-49 years, 50-59 years and ge;60 years. The plasma cholesterol and triglyceride level of BRVO group, control group, and age subgroups of BRVO and control group were comparatively analyzed. Results The average plasma cholesterol levels were (4.529plusmn;0.100) and (4.274plusmn;0.106) mmol/L in BRVO and control group, respectively. There was no difference between two groups (t=-1.738,P>0.05). The average triglyceride levels were (1.500plusmn;0.129) and (1.319plusmn;0.095) mmol/L in BRVO and control group, respectively. There was no difference between two groups (t=-1.135,P>0.05). There was no difference of average plasma cholesterol (t=-1.755, 1.850, -1.892, -0.507) and triglyceride (t=0.846, -0.074, -1.288, -1.887) level in age subgroups of BRVO and control subgroup (P>0.05). Conclusion There is no significant difference of serum lipid level between BRVO patients and controls.
Objective To observe the clinical features of combined central retinal artery and vein occlusion. Methods The clinical data of eight patients of combined central retinal artery and vein occlusion diagnosed by fundus examination and fundus fluorescein angiography (FFA) was analyzed retrospectively, including the causes, fundus manifestations and FFA features. Results 4/8 patients had hypertension and dyslipidemia, 2/8 patients had traumatic retrobulbar hemorrhage, one patient had orbital cellulitis and one patient had systemic lupus erythematosus. All the patients had posterior pole retinal edema, hemorrhage, thin retinal artery, dilated vein, and papilledema. FFA showed delayed arterial filling, and there was no filling of retinal arterial branches until the late stage of FFA. Laminar flow delayed in large retinal veins, and there was no filling or only retrograde filling in retinal vein branches. Large areas with dot-like or patchy weak choroidal fluorescence can be observed in five patients. Conclusions Combined central retinal artery and vein occlusion is rare with complex etiology. The fundus manifestations and FFA features are atypical, but have features of central retinal artery occlusion and central retinal vein occlusion.
Objective To observe the clinical features and outcomes of vitrectomy for diabetic retinopathy (DR) with central retinal vein occlusion (CRVO) in type 2 diabetes mellitus (T2DM). Methods A total of 192 patients (241 eyes) with proliferative DR (PDR) who underwent vitrectomy were enrolled in this study. All the patients were diagnosed as vitreous hemorrhage (VH) because of suddenly decreased vision. There were 93 eyes with tractional retinal detachment (TRD) and six eyes with neovascularization of iris (NVI). The patients were divided into PDR with CRVO group (group A, 41 eyes) and PDR group (group B, 200 eyes) according to the results of fundus examination. All patients received vitrectomy with silicone oil and C3F8 gas tamponade. There were 138 eyes with silicone oil tamponade which including 30 eyes in group A and 108 eyes in group B. The difference of number in silicone oil-filled eyes in two groups was statistically significant (chi;2=5.110,P<0.05). There were 38 eyes with C3F8 gas tamponade which including six eyes in group A and 32 eyes in group B. There was no difference in C3F8 gas-filled eyes numbers in two groups (chi;2=0.048, P>0.05). The follow-up ranged from one to 60 months, with the mean of (28.69plusmn;17.28) months. The corrected vision, retinal reattachment, persisting macular edema (ME), neovascular glaucoma (NVG) and repeated VH after surgery were comparatively analyzed. Results Of 241 eyes, there were 41 eyes (17.0%) with CRVO. Before surgery, the differences of corrected vision (Z=-0.138), intraocular pressure (t=0.966), whether there was TRD or not (chi;2=0.412), whether underwent panretinal photocoagulation or not (chi;2=1.416) were not statistically significant (P>0.05), but the difference of whether NVI were present or not was statistically significant (chi;2=31.724,P<0.05) between two groups. After surgery, the corrected vision improved in both two groups (Z=2.319, 4.589; P<0.05). There was no difference of corrected vision after surgery between two groups (Z=0.782,P>0.05). Postoperative complications occurred in 94 eyes, including 26 eyes in group A and 68 eyes in group B. The differences of incidence of reoperation (chi;2=0.498), retinal reattachment (chi;2=0.818), persisting ME (chi;2=2.722) between two groups after surgery were not statistically significant (P>0.05). The incidence of repeated VH (chi;2=5.737) and NVG (chi;2=6.604) in group A were higher than those in group B (P<0.05). Conclusions CRVO is commonly found to coexist with DR in T2DM patients with VH. Combined with CRVO patients are more likely to suffer NVI. Vitrectomy can improve the visual function in PDR with CRVO patients.
Objective To study the proximal diameter changes of retinal blood vessel following branch retinal vein occlusion (BRVO). Methods Color fundus photographs and fundus fluorescein angiography (FFA) photographs of 48 patients with typical unilateral BRVO were analyzed using IMAGEnet software. The diameter of retinal artery (RAD) and vein (RVD) close to optic disc (within one DD from the optic disc) in four quadrants including the affected quadrant were measured with linear measuring tools.Results The proximal diameter of RAD and RVD in corresponding normal quadrants of the BRVO eye had no significant change comparing with the contralateral eye. The proximal diameter of RAD, but not RVD of the affected quadrant such as superotemporal (t=-2.342, P=0.026)or inferotemporal (t=-3.069, P=0.010)quadrant, increased remarkably. Conclusions In corresponding affected quadrant with BRVO, only RAD close to optic disc increases markedly, RVD has no significant change.
Objective To measure the macular function of the fellow eye in patients with unilateral retinal vein occlusion (RVO). Methods A total of 24 cases of unilateral RVO were diagnosed by fundus fluorescein angiography (FFA), and multifocal ERG (mfERG) was recorded by RETI scan. The mfERG data of 24 fellow eyes of those RVO patients, and 18 normal control eyes were analyzed and compared. The parameters included the amplitude density, latency of the P1 and N1 wave in 6 concentric circles and 4 quadrants of the mfERG graphics. Results The amplitude densities of P1 and N1 wave in first and second concentric circles of RVO fellow eyes were significantly lower than normal eyes (t=4.520, 2.147; P<0.05). There was no significant difference (P>0.05) of P1/N1 latency in any concentric circles or quadrants between RVO fellow eyes and normal eyes. Conclusion The central fovea of the RVO fellow eyes was functionally impaired.
Objective To observe the changes of photopic negative response (PhNR) of electroretinography (ERG) in patients with retinal vein occlusion (RVO). Methods A total of 30 patients (30 eyes) with retinal vein occlusion (RVO) diagnosed by indirect ophthalmoscopy and fundus fluorescein angiography (FFA) were selected; the unaffected fellow eyes of the patients and another 25 healthy agematched individuals (50 eyes) were cllected as the normal control. All of the patients underwent the examination of visual acuity, visual field, and flashERG (FERG); the normal control ones underwent FERG. In the 30 patients with RVO, there were 14 with central RVO (CRVO) and 16 with branch RVO (BRVO). According to the disease history and results of FFA, the patients were divided into 3 time groups: lt;1 month, 1-3 months, and gt;3 months; according to the types of RVO, the patients were divided into ischemic and nonischemic group. The amplitude of PhNR and other parameters were analysed. The relationship among the amplitude of PhNR and RVO types and time course were analyzed.Results The amplitude of PhNR in the CRVO and BRVO eyes was (28.20plusmn;5.8) and (36.96plusmn;4.71) mu;V, respectively; those in the unaffected fellow and control eyes was (61.25plusmn;3.93) and (59.33plusmn;16.92) mu;V, respectively; the amplitude of PhNR was significantly smaller in the CRVO and BRVO eyes than those in the unaffected fellow or control eyes (F=10.69 and 9.80,P<0.001; F=9.69 and 9.75,P<0.001). The amplitude of PhNR in ischemic and nonischemic group in CRVO eyes was (22.77plusmn;15.73) and (36.63plusmn;12.91) mu;V, respectively; the difference between the two groups was significant(t=6.54, Plt;0.01). The amplitude of PhNR in ischemic and nonischemic group in BRVO eyes was (32.39plusmn;13.22) and (46.73plusmn;10.43) mu;V, respectively; there was no significant difference between the two groups(t=2.12, Plt;0.05). The amplitude of PhNR was (24.58plusmn;14.60) and (27.94plusmn;15.73) mu;V, respectively, in CRVO and BRVO eyes with lt; 1 month disease course; was (50.39plusmn;13.80) and (58.69plusmn;12.43) mu;V in those with 1-3 months disease course; and was (25.40plusmn;19.94) and (34.48plusmn;16.72) mu;V in those with >3 months diseases course. Significant difference was found between the 1-3 months group and >3 months group in CRVO eyes(F=4.30,Plt;0.01). Conclusions The amplitude of PhNRs was significantly smaller in RVO eyes than those in the unaffected fellow or control eyes.The amplitude of PhNR amplitude of ischemic type was smaller than that of nonischemic type. The amplitude of PhNR has descending,ascending,and descending tendency during the disease courses.
Objective To observe the change of diffusion upper limit of macromol ecules through pathological retina and the difference between the layers of retina. Methods Retinal edema was emulated by establishing branch retinal vein occlusion (RVO) model in miniature pig eyes under photodynamic method. Two days later, the retinas of both eyeballs were peeled off. The diffusion test apparatus was designed by ourselves. FITC-dextrans of various molecular weights (4.4, 9.3, 19.6, 38.9, 71.2 and 150 kDa) and Carboxyfluorescein (376 Da) were dissolved in RPMI1640 solutions and diffused through inner or outer surface of retina. The rate of transretinal diffusion was determined with a spectrophotometer. Theoretical maximum size of molecule (MSM) was calculated by extrapolating the trend-linear relationship with the diffusion rate. In separate experiments to determine the sites of barrier to diffusion, FITC-dextrans were applied to either the inner or outer retinal surface, processed as frozen sections, and viewed with a fluores cence microscope. Results FITC-dextrans applying to inner retinal surface, 4.4 kDa dextrans were largely blocked by inner nuclear layer (INL); 19.6,71.2 kDa dextrans were blocked by the nerve fiber layer (NFL) and inner plexiform layer; 15.0 kDa dextrans were blocked by NFL. FITC-dextrans applying to outer retinal surface, most dextrans with various molecular weights were blocked before outer nuclear layer (ONL). No matter applying to the inner or outer surface, Carboxyfluore scein can diffuse through the whole retina and aggregate at INL and ONL. After RVO, the inner part of retina became edema and cystoid, loosing the barrier function. Compared with the normal retina, the MSM in RVO tissues increased (6.5plusmn;0 39nm Vs 6.18plusmn;0.54nm, t=4.143, P=0.0001). Conclusions A fter RVO, the barrier function of inner part of retinal is destroyed and the upper limit of diffusion macromolecule size increased, which is nevertheless limited. ONL acts as bottle-neck barriers to diffusion, if the outer part of retina is damaged, the change of the diffusion upper limit will be prominent. (Chin J Ocul Fundus Dis,2008,24:197-201)
Retinal vein occlusion (RVO) is affected by multiple factors, and there are lots of misunderstanding and disputation on the diagnosis and treatment. Compared with the natural disease course of RVO, there was no safe and effective treatment for RVO at present. Necessary investigation and disputation is helpful to make objective conclusion. We should objectively analyze and evaluate the results of investigation from home and abroad. (Chin J Ocul Fundus Dis, 2007, 23: 155-158)