west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "SU Peng" 3 results
  • PREPARATION OF SELECTIVELY DECELLULAR XENOSKIN AND ITS BIOCOMPATIBILITY

    Objective To prepare and study the biocompatibil ity of selectively decellular xenoskin which has the character of the lower antigen, continuous epidermis, and the dermal matrix without any cellular components. Methods The porcine skin was treated with glutaraldehyde solution, trypsin, and detergent solution TritonX-100 to prepare the selectivelydecellular xenoskin. The cytotoxicity was tested according to GB/T16886.5-2003 biological evaluation of medical devices for in vitro cytotoxicity, and the levels of cytotoxicity were evaluated with the United States Pharmacopeia. Subdermal implantation was tested according to GB/T16886.6-1997 biological evaluation of medical devices for local effects after implantation. Seventytwo mature Wistar rats were randomly assigned to groups A, B, and C (n=24). Three kinds of materials were implanted into subcutaneous of rats back. Selectively decellular xenoskin was transplanted into group A, fresh porcine skin was transplanted into group B, and allogeneic skin was transplanted into group C. The samples were collected to make the observation of gross and histology after 1, 2, 4, 8, 12, and 16 weeks. Results The cytotoxicity was proved to be first grade by biocompatibil ity test. The gross and histological observation of subdermal implantation: after implantation, the most severe inflammatory reactions were seen in group B which dispersion was very slow. Inflammatory reactions in groups A and C alleviated gradually. In groups A and C, there was an increased collagen fiber density and angiogenesis at late stage; the transplanted skin was gradually degraded and absorbed. In group B, no obvious degradation and absorption were observed. Conclusion Selectively decellular xenoskin, prepared with glutaraldehyde solution, trypsin, and detergent solution, possesses characteristics of integral skin structure andexcellent biocompatibil ity, so it can be used as a new type substitute to repair the burn wound.

    Release date:2016-08-31 05:48 Export PDF Favorites Scan
  • Dynamic simulation and experimental verification of human body turning over in supine position

    The tilted supine position has been evaluated to be one of the significantly effective approaches to prevent bedsore of the patients in the bedridden state. Thus, it has deeply positive influences that in view of dynamics this study explores how the position works. Based on the anatomical theories, this study formulates the human dynamic model. Furthermore, the dynamic simulation of three usual postures in tilted supine position including lying on back, lying with one knee bent and lying with the upper and lower limb on one side lifted is carried out. Therefore, the changes of the three driving forces named as chest force, waist force and thigh force in the tilted supine position can be observed. In order to verify the validity of this simulation, this study obtains the electromyogram measurements of ectopectoralis, external obliques and thigh muscles which are respectively close to the chest, waist and thigh by conducting the human force measurements experiment. The result revealed that in terms of range and trend, the experimental data and simulation’s data were consistent. In conclusion, the changes of these muscles in the supine position movements are researched efficiently by both this experiment and the dynamic simulation. Besides, the result is crucially key to find the mechanism of human’s tilted supine position movements.

    Release date:2019-12-17 10:44 Export PDF Favorites Scan
  • Dynamics analysis of knee joint during sit-stand movement

    Sit-stand movement is one of the most common movement behaviors of the human body. The knee joint is the main bearing joint of this movement. Thus, the dynamic analysis of knee joint during this movement has deeply positive influences. According to the principle of moment balance, the dynamics of the knee joint during the movement were analyzed. Furthermore, combined with the data obtained from optical motion capture and six-dimensional ground reaction force test, the curve of knee joint torque was calculated. To verify the accuracy of the analysis of dynamic, the human body model was established, the polynomial equations of angle and angular velocity were fitted according to the experimental data, and the knee joint simulation of the movement was carried out. The result revealed that in terms of range and trend, the theoretical data and simulation data were consistent. The relationship between knee joint torque and ground reaction force was revealed based on the variation law of knee joint torque. During the sit-stand movement, the knee joint torque and the ground reaction force were directly proportional to each other, and the ratio was 5 to 6. In the standing process, the acceleration first increased and then decreased and finally increased in reverse, and the maximum knee torque occurred at an angle of about 140°. In the sitting process, the torque was maximized in the initial stage. The results of the dynamics analysis of knee joint during sit-stand movement are beneficial to the optimal design and force feedback control of seated rehabilitation aids, and can provide theoretical guidance for knee rehabilitation training.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content