west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Sleep stage" 2 results
  • Study on the method of polysomnography sleep stage staging based on attention mechanism and bidirectional gate recurrent unit

    Polysomnography (PSG) monitoring is an important method for clinical diagnosis of diseases such as insomnia, apnea and so on. In order to solve the problem of time-consuming and energy-consuming sleep stage staging of sleep disorder patients using manual frame-by-frame visual judgment PSG, this study proposed a deep learning algorithm model combining convolutional neural networks (CNN) and bidirectional gate recurrent neural networks (Bi GRU). A dynamic sparse self-attention mechanism was designed to solve the problem that gated recurrent neural networks (GRU) is difficult to obtain accurate vector representation of long-distance information. This study collected 143 overnight PSG data of patients from Shanghai Mental Health Center with sleep disorders, which were combined with 153 overnight PSG data of patients from the open-source dataset, and selected 9 electrophysiological channel signals including 6 electroencephalogram (EEG) signal channels, 2 electrooculogram (EOG) signal channels and a single mandibular electromyogram (EMG) signal channel. These data were used for model training, testing and evaluation. After cross validation, the accuracy was (84.0±2.0)%, and Cohen's kappa value was 0.77±0.50. It showed better performance than the Cohen's kappa value of physician score of 0.75±0.11. The experimental results show that the algorithm model in this paper has a high staging effect in different populations and is widely applicable. It is of great significance to assist clinicians in rapid and large-scale PSG sleep automatic staging.

    Release date: Export PDF Favorites Scan
  • Multi-modal physiological time-frequency feature extraction network for accurate sleep stage classification

    Sleep stage classification is essential for clinical disease diagnosis and sleep quality assessment. Most of the existing methods for sleep stage classification are based on single-channel or single-modal signal, and extract features using a single-branch, deep convolutional network, which not only hinders the capture of the diversity features related to sleep and increase the computational cost, but also has a certain impact on the accuracy of sleep stage classification. To solve this problem, this paper proposes an end-to-end multi-modal physiological time-frequency feature extraction network (MTFF-Net) for accurate sleep stage classification. First, multi-modal physiological signal containing electroencephalogram (EEG), electrocardiogram (ECG), electrooculogram (EOG) and electromyogram (EMG) are converted into two-dimensional time-frequency images containing time-frequency features by using short time Fourier transform (STFT). Then, the time-frequency feature extraction network combining multi-scale EEG compact convolution network (Ms-EEGNet) and bidirectional gated recurrent units (Bi-GRU) network is used to obtain multi-scale spectral features related to sleep feature waveforms and time series features related to sleep stage transition. According to the American Academy of Sleep Medicine (AASM) EEG sleep stage classification criterion, the model achieved 84.3% accuracy in the five-classification task on the third subgroup of the Institute of Systems and Robotics of the University of Coimbra Sleep Dataset (ISRUC-S3), with 83.1% macro F1 score value and 79.8% Cohen’s Kappa coefficient. The experimental results show that the proposed model achieves higher classification accuracy and promotes the application of deep learning algorithms in assisting clinical decision-making.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content