west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Statistical shape model" 2 results
  • Rapid femur modeling method based on statistical shape model

    The geometric bone model of patients is an important basis for individualized biomechanical modeling and analysis, formulation of surgical planning, design of surgical guide plate, and customization of artificial joint. In this study, a rapid three-dimensional (3D) reconstruction method based on statistical shape model was proposed for femur. Combined with the patient plain X-ray film data, rapid 3D modeling of individualized patient femur geometry was realized. The average error of 3D reconstruction was 1.597–1.842 mm, and the root mean square error was 1.453–2.341 mm. The average errors of femoral head diameter, cervical shaft angle, offset distance and anteversion angle of the reconstructed model were 0.597 mm, 1.163°, 1.389 mm and 1.354°, respectively. Compared with traditional modeling methods, the new method could achieve rapid 3D reconstruction of femur more accurately in a shorter time. This paper provides a new technology for rapid 3D modeling of bone geometry, which is helpful to promote rapid biomechanical analysis for patients, and provides a new idea for the selection of orthopedic implants and the rapid research and development of customized implants.

    Release date: Export PDF Favorites Scan
  • Three-dimensional reconstruction of femur based on Laplace operator and statistical shape model

    Reconstructing three-dimensional (3D) models from two-dimensional (2D) images is necessary for preoperative planning and the customization of joint prostheses. However, the traditional statistical modeling reconstruction shows a low accuracy due to limited 3D characteristics and information loss. In this study, we proposed a new method to reconstruct the 3D models of femoral images by combining a statistical shape model with Laplacian surface deformation, which greatly improved the accuracy of the reconstruction. In this method, a Laplace operator was introduced to represent the 3D model derived from the statistical shape model. By coordinate transformations in the Laplacian system, novel skeletal features were established and the model was accurately aligned with its 2D image. Finally, 50 femoral models were utilized to verify the effectiveness of this method. The results indicated that the precision of the method was improved by 16.8%–25.9% compared with the traditional statistical shape model reconstruction. Therefore, the method we proposed allows a more accurate 3D bone reconstruction, which facilitates the development of personalized prosthesis design, precise positioning, and quick biomechanical analysis.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content