west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Structure design" 2 results
  • Design and analysis of shoulder type exoskeleton stretcher for individual soldier

    For the transportation process of rescuing wounded personnel on naval vessels, a new type of shoulder type exoskeleton stretcher for individual soldier was designed in this paper. The three-dimensional model of the shoulder type exoskeleton stretcher for individual soldier was constructed using three dimensional modeling software. Finite element analysis technique was employed to conduct statics simulation, modal analysis, and transient dynamics analysis on the designed exoskeleton stretcher. The results show that the maximum stress of the exoskeleton stretcher for walking on flat ground is 265.55 MPa, which is lower than the allowable strength of the fabrication material. Furthermore, the overall deformation of the structure is small. Modal analysis reveals that the natural frequency range of the exoskeleton stretcher under different gait conditions is 1.96 Hz to 28.70 Hz, which differs significantly from the swing frequency of 1 Hz during walking. This indicates that the designed structure can effectively avoid resonance. The transient dynamics analysis results show that the maximum deformation and stress of exoskeleton stretcher remain within the safety range, which meets the expected performance requirements. In summary, the shoulder type exoskeleton stretcher for individual soldier designed in this study can solve the problem of requiring more than 2 people to carry for the existing stretcher, especially suitable for narrow spaces of naval vessels. The research results of this paper can provide a new solution for the rescue of wounded personnel on naval vessels.

    Release date: Export PDF Favorites Scan
  • Structural design of “fitness” and “feasibility” of body-fitted stent and its mechanical analysis

    To address the conflict between the “fitness” and “feasibility” of body-fitted stents, this paper investigates the impact of various smoothing design strategies on the mechanical behaviour and apposition performance of stent. Based on the three-dimensional projection method, the projection region was fitted with the least squares method (fitting orders 1–6 corresponded to models 1–6, respectively) to achieve the effect of smoothing the body-fitted stent. The simulation included the crimping and expansion process of six groups of stents in stenotic vessels with different degrees of plaque calcification. Various metrics were analyzed, including bending stiffness, stent ruggedness, area residual stenosis rate, contact area fraction, and contact volume fraction. The study findings showed that the bending stiffness, stent ruggedness, area residual stenosis rate, contact area fraction and contact volume fraction increased with the fitting order's increase. Model 1 had the smallest contact area fraction and contact volume fraction, 77.63% and 83.49% respectively, in the incompletely calcified plaque environment. In the completely calcified plaque environment, these values were 72.86% and 82.21%, respectively. Additionally, it had the worst “fitness”. Models 5 and 6 had similar values for stent ruggedness, with 32.15% and 32.38%, respectively, which indicated the worst "feasibility" for fabrication and implantation. Models 2, 3, and 4 had similar area residual stenosis rates in both plaque environments. In conclusion, it is more reasonable to obtain the body-fitted stent by using 2nd to 4th order fitting with the least squares method to the projected region. Among them, the body-fitted stent obtained by the 2nd order fitting performs better in the completely calcified environment.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content