west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "TIAN Shuxiang" 2 results
  • The inverse stochastic resonance in a small-world neuronal network under electromagnetic stimulation

    Electromagnetic stimulation is an important neuromodulation technique that modulates the electrical activity of neurons and affects cortical excitability for the purpose of modulating the nervous system. The phenomenon of inverse stochastic resonance is a response mechanism of the biological nervous system to external signals and plays an important role in the signal processing of the nervous system. In this paper, a small-world neural network with electrical synaptic connections was constructed, and the inverse stochastic resonance of the small-world neural network under electromagnetic stimulation was investigated by analyzing the dynamics of the neural network. The results showed that: the Levy channel noise under electromagnetic stimulation could cause the occurrence of inverse stochastic resonance in small-world neural networks; the characteristic index and location parameter of the noise had significant effects on the intensity and duration of the inverse stochastic resonance in neural networks; the larger the probability of randomly adding edges and the number of nearest neighbor nodes in small-world networks, the more favorable the anti-stochastic resonance was; by adjusting the electromagnetic stimulation parameters, a dual regulation of the inverse stochastic resonance of the neural network can be achieved. The results of this study provide some theoretical support for exploring the regulation mechanism of electromagnetic nerve stimulation technology and the signal processing mechanism of nervous system.

    Release date: Export PDF Favorites Scan
  • Effect of electroconvulsive therapy on brain functional network in major depressive disorder

    Electroconvulsive therapy (ECT) is an interventional technique capable of highly effective neuromodulation in major depressive disorder (MDD), but its antidepressant mechanism remains unclear. By recording the resting-state electroencephalogram (RS-EEG) of 19 MDD patients before and after ECT, we analyzed the modulation effect of ECT on the resting-state brain functional network of MDD patients from multiple perspectives: estimating spontaneous EEG activity power spectral density (PSD) using Welch algorithm; constructing brain functional network based on imaginary part coherence (iCoh) and calculate functional connectivity; using minimum spanning tree theory to explore the topological characteristics of brain functional network. The results show that PSD, functional connectivity, and topology in multiple frequency bands were significantly changed after ECT in MDD patients. The results of this study reveal that ECT changes the brain activity of MDD patients, which provides an important reference in the clinical treatment and mechanism analysis of MDD.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content