west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Ventilator-induced lung injury" 4 results
  • Effects of Positive End-Expiratory Pressure Ventilation via Different Tidal Volume on Dogs with Oleic Acid-Induced Acute Lung Injury

    Objective To investigate the effects of mechanical ventilation( MV) via different tidal volume ( VT) in combination with positive end expiratory pressure( PEEP) on dogs with acute lung injury( ALI) . Methods Dog model of oleic acid-induced ALI was established. And after that animals were randomized into different MV groups ( included low VT group, VT =6 mL/kg; and high VT group, VT =20 mL/kg) and ventilated for 6 h with a PEEP of 10 cmH2O. Arterial blood gas wasmeasured before, during and after ALI model was established ( at 1 h,2 h, 4 h and 6 h during MV) . The albumin concentration in BALF and pathological change of the lung tissue were evaluated in order to determine the lung injury while animals were sacrificed after 6 h MV. Results ALI model was successfully established ( 2. 50 ±0. 80) hours after oleic acid injection. Arterial pH decreased much severer in the low VT group than the high VT group( P lt;0. 01) . PaO2 and SaO2 in ventilation groups decreased after modeling but increased after MV, and PaO2 and SaO2 were significantly higher in the low VT group than the high VT group after 6 h MV( P lt;0. 05) . PaCO2 fluctuated less in the high VT group, while it increased significantly in the low VT group after MV( P lt; 0. 01) . Oxygenation index( PaO2 /FiO2 ) was lowered after modeling( P lt; 0. 01) , decreased to about 190 mm Hg after 1 h MV. And PaO2 /FiO2 in low VT group was significantly higher than the high VT group after 6 h MV( P lt; 0. 05) . BALF albumin concentration and the lung injury score in the low VT group were both significantly lower than the high VT group( both P lt; 0. 05) . Conclusions Ventilation with PEEP could improve the oxygenation of ALI dogs, and low VT ventilation improves the oxygenation better than high VT. Otherwise, low VT could induce hypercapnia and ameliorate lung injury caused by high VT MV.

    Release date:2016-09-14 11:22 Export PDF Favorites Scan
  • Mechanical Stretch Activates Alveolar Macrophages to Produce Cytokines and Has Synergistic Effect with Lipopolysaccharide in Inducing MIP-2 Release

    Objective To observe the effects of mechanical stretch on cytokines release from alveolar macrophages( AMs) and the expression of macrophage inflammatory protein-2( MIP-2) induced by lipopolysaccharide( LPS) . Methods AMs were divided into the following groups: ①AMs were subjected to 20% elongation by Flexercell 4000T cell stress system for 24 hours and the supernatant was collected to detect the levels of TNF-α, IL-1β, IL-2, IL-4, IL-6, IL-10, IL-12, IFN-γ, macrophage inflammatory protein-1α( MIP-1α) , MIP-2, monocyte chemoattractant protein-1( MCP-1) , granulocyte /macrophage colony stimulating factors( GM-CSF) , interferon inducible protein-10( IP-10) , regulated on activation in normal T-cell expressed and secreted( Rantes) and keratinocyte chemoattractant( KC) , by using LiquiChip system. ② AMs were subjected to 5% , 10% , 15% and 20% elongation for 24 hours and the supernatant was collected to detect the levels of MIP-2. ③AMs were subjected to 20% elongation and MIP-2 in supernatant was detected 1, 3,6, 12, and 24 hours later. ④ AMs were subjected to 20% elongation and/ or LPS at a concentration of 10 ng/mL, and MIP-2 in supernatant was detected 24 hours later. Unstretched AMs were used as control in all kind of test. Results ①The levels of IL-1β, IL-6,MIP-2, MCP-1, IFN-γand IP-10 secreted by stretched AMs were 8. 7, 4. 3, 38. 6, 4. 8, 14. 2 and 5. 0 times those of the control group( all P lt; 0. 001) . ② The levels of MIP-2 secreted by AMs subjected to 10% , 15% and 20% elongation were ( 480. 5 ±93. 1) pg /mL,( 806. 3 ±225. 9) pg/mL and ( 1335. 7 ±18. 5) pg/mL respectively, all significantly higher than those oft he control group [ ( 34. 6 ±11. 4) pg/mL, all P lt;0. 001] . ③ Three hours after the stimulation of stretch the level of MIP-2 began to increase gradually. And 6, 12, and 24 hours after the stimulation the levels of MIP-2 secreted by the AMs were ( 819. 4 ±147. 5) pg/mL, ( 1287. 6 ±380 ±3 ) pg/mL and ( 1455. 9 ±436. 7) pg/mLrespectively, all significantly higher than those of the control group[ ( 33. 4 ±10. 2) pg/mL, all P lt; 0. 001] . ④When the AMs were stimulated individually by LPS( 10 ng /mL) or mechanical stretch ( 20% ) , the levels of MIP-2 increased to ( 1026. 3 ±339. 5 ) pg/mL and ( 1335. 7 ±318. 5 ) pg/mL respectively( both P lt; 0. 001) . When the AMs were costimulated by LPS and mechanical stretch, the level of MIP-2 increased to ( 2275. 3 ±492. 1) pg/mL, implicating a synergistic effect between mechanical stretch and LPS ( F = 121. 983, P lt; 0. 001) . Conclusions Mechanical stretch activates AMs to produce multiple inflammatory cytokines and induce AMs to secret MIP-2 in a strength- and time-dependent manner.Mechanical stretch also has synergistic effect with LPS in inducing MIP-2 release, which might play an important role in the development of ventilator-induced lung injury.

    Release date:2016-09-14 11:23 Export PDF Favorites Scan
  • Establishment and Evaluation of Rabbit Model of Ventilator-Induced Lung Injury

    Objective To establish a rabbit model of ventilator-induced lung injury. Methods Fourty healthy New Zealand rabbits were randomly divided into 3 groups: ie. a routine 8 mL/kg tidal volume group( VT8 group) , 25 mL/kg large tidal volume group( VT25 group) , and 40 mL/kg large tidal volume group( VT40 group) . VT25 and VT40 group were further divided into 2 hours and 4 hours ventilation subgroups. Arterial blood gas, lung mechanical force and hemodynamic parameters were monitored. Lungtissue was sampled for evaluate lung wet/dry ratio and lung injury by HE stain. Bronchoalveolar lavage fluid ( BALF) was collected for measurement of protein concentration, total and differential cell counts. Results Compared with VT8 group, lung injury score in both VT40 and VT25 groups were elevated significantly, ofwhich 4 hour VT40 subgroup was the highest. Lung pathology examination of VT40 group revealed apparent alveolar deformation, interstitial and alveolar space exudation, inflammatory cells infiltration, pulmonary consolidation and alveolar hemorrhage. Lung pathology examination of VT25 group showed pulmonary intervalthickening, inflammatory cells infiltration, while alveolar intravasation was mild. Blood gas analysis showed that PaO2 /FiO2 was deteriorated with time in VT25 and VT40 groups, and PaO2 /FiO2 at the 3 hours in VT40 group( lt; 300 mm Hg) had met the acute lung injury standard, while which in VVT25 group was above 300 mmHg. Lung wet/dry ratio, BALF protein concentration, total nucleated cell and neutrophilic leukocyte were elevated in both VT25 and VT40 groups, of which 4 hours VT40 group was the highest. Conclusion Using 4 hours ventilation at a tidal volume of 40 mL/kg can successfully establish the rabbit model of ventilator-induced lung injury.

    Release date:2016-08-30 11:53 Export PDF Favorites Scan
  • Effects of Heme Oxygenase-1 Intervention on Ventilator-Induced Lung Injury

    Objective To explore the expression and effect of heme oxygenase-1 ( HO-1) in ventilator-induced lung injury. Methods Twenty-four New Zealand rabbits were randomly assigned to three groups, ie. a conventional ventilation + PEEP group( C group) , a ventilator-induced lung injury group( VILI group) , and a VILI + HO-1 inducer hemin group( Hm group) .Western blot and immunohistochemistry assay were used to investigate the expression of HO-1 protein. Blood gas analysis, lung wet /dry ratio, lunghistopathology and lung injury score were used to evaluate lung injury. Results HO-1 protein expression significantly increased in the VILI group compared with the C group. HO-1 was found mainly in alveolar epithelial cells and vascular endothelial cells, as well as in alveolar macrophages and neutrophils. Compared with the VILI group, HO-1 protein and PaO2 /FiO2 increased, while lung wet/dry ratio and lung injury score decreased in the Hmgroup significantly( P lt;0. 05) . Conclusion High HO-1 expression can alleviate lung injury from large tidal volume ventilation, implying its protective role in lung pathogenesis.

    Release date:2016-08-30 11:53 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content