west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "WANG Jieqing" 2 results
  • Facial nerve-sublingual nerve parallel bridge anastomosis for facial nerve injury caused by closed temporal bone fractures

    Objective To investigate the effectiveness of facial nerve-sublingual nerve parallel bridge anastomosis for facial nerve injury resulting from closed temporal bone fractures. Methods Between January 2017 and December 2019, 9 patients with facial nerve injury resulting from closed temporal bone fracture caused by head and face trauma were treated. Among them, 5 patients were treated with facial nerve-sublingual nerve parallel bridge anastomosis (operation group), and 4 patients were treated with neurotrophic drugs combined with rehabilitation exercise (conservative group). There was no significant difference in gender, age, side, cause of injury, duration of facial nerve injury before surgery, House-brackmann grading (hereinafter referred to as HB grading) of facial nerve injury, and other general information between 2 groups (P>0.05). HB grading was used to evaluate the improvement of facial nerve function before and after treatment. At the same time, facial nerve neuroelectrophysiological test was performed to evaluate the electrical activity of facial muscles before and after treatment. Tongue function, atrophy, and tongue deviation were evaluated after nerve anastomosis according to the tongue function scale proposed by Martins et al. Results Patients in both groups were followed up 12-30 months, with an average of 25 months. None of the 5 patients in the operation group showed symptoms such as tongue muscle atrophy, tongue extension deviation, hypoglossal nerve dysfunction (mainly including slurred speech, choking with water), postoperative infection, bleeding, lower limb muscle atrophy or lower limb motor dysfunction after sural nerve injury. Postoperative skin sensory disturbance in lateral malleolus area was found, but gradually recovered to normal. During the follow-up, facial nerve and sublingual motor neurons were innervated to paralyzed facial muscle in the operation group. At last follow-up, the HB grading of 5 patients in the operation group improved from preoperative grade Ⅴ in 2 cases, grade Ⅵ in 3 cases to grade Ⅱ in 3 cases, grade Ⅲ in 1 case, and grade Ⅳ in 1 case. And in the conservative group, there were 1 patient with grade Ⅴ and 3 patients with grade Ⅵ before operation, facial asymmetry continued during follow-up, and only 2 patients improved from grade Ⅵ to grade Ⅴ at last follow-up. There was significant difference in prognosis HB grading between the two groups (t=5.693, P=0.001). In the operation group, the amplitude and frequency of F wave were gradually improved, and obvious action potential could be collected when the facial muscle was vigorously contracted. On the contrary, there was no significant difference in neuroelectrophysiological results before and after treatment in the conservative group. ConclusionFacial nerve-sublingual nerve parallel bridge anastomosis can effectively retain the integrity of the facial nerve, while introducing the double innervation of the sublingual nerve opposite nerve, which is suitable for the treatment of severe incomplete facial nerve injury caused by closed fracture.

    Release date: Export PDF Favorites Scan
  • Study on the influence of buried thread nasal augmentation on dorsal soft tissue of nose and revision rhinoplasty

    ObjectiveTo investigate the influence of buried thread nasal augmentation on dorsal soft tissue of nose and revision rhinoplasty. Methods A clinical data of 29 patients requesting revision rhinoplasty after buried thread nasal augmentation, who were admitted between July 2017 and July 2019 and met the selection criteria, was retrospectively analyzed. All patients were female with an average age of 26.8 years (range, 18-43 years). The patiens were admitted to the hospital at 3-48 months after buried thread nasal augmentation (median, 15 months). Among them, there were 18 cases of insufficient nasal tip projection, 22 cases of insufficient nasal root projection, 7 cases of threads ectasia, 5 cases of threads exposure, 3 cases of infection, and 10 cases with two or more conditions. There were 9 cases of combined short nose deformity, 1 case of spherical hypertrophy of the nasal tip, 3 cases of deviation of the nasal columella, 3 cases of excessive width of the nasal base, and 1 case of nasal hump. Three infected patients only underwent threads removal and debridement. The rest patients underwent revision rhinoplasty, and the dorsum of the nose was made with polytetrafluoroethylene expansion; the tip of the nose was reshaped by taking autologous rib cartilage and alar cartilage in 16 cases, and by taking autologous septal cartilage and alar cartilage in another 10 cases. The threads and surrounding tissue specimens removed during operation were subjected to histologic observation. Nasal length and nasal tip projection were measured after revision rhinoplasty and the ratio was calculated to evaluate the nasal morphology; patient satisfaction was evaluated using the Likert 5-grade scale. ResultsPatients were followed up 12-48 months (mean, 18 months). Inflammation was controlled in 3 patients with infections caused by buried thread nasal augmentation. The remaining 26 patients had satisfactory results immediately after revision rhinoplasty. Before revision rhinoplasty and at 7 days and 6 months after revision rhinoplasty, the nasal length was (4.11±0.34), (4.36±0.25), and (4.33±0.22) cm, respectively; the nasal tip projection was (2.34±0.25), (2.81±0.18), and (2.76±0.15) cm, respectively; and the nasal tip projection/nasal length ratio was 0.57±0.08, 0.65±0.05, and 0.64±0.04, respectively. There were significant differences in the nasal length and the nasal tip projection between time points (P<0.05). There was a significant difference in the nasal tip projection/nasal length ratio between pre- and post-operation (P<0.05), but there was no significant difference between 7 days and 6 months after operation (P>0.05). The Likert score for satisfaction ranged from 1.5 to 5.0 (mean, 4.05). During follow-up period of 26 patients, no nasal prosthesis was exposed, and the shape of the nose was stable, and the nasal skin of 5 patients with exposed threads could be seen with different degrees of scarring; there was no infection, cartilage resorption, and no cartilage deformation, displacement, or exposure. Histological observation showed that absorbable threads were not only absorbed after implantation, but also with the prolongation of time, the inflammatory changes in the surrounding tissues caused by decomposition and absorption of the threads showed a gradual aggravation of the first, the heaviest inflammatory reaction in 6 to 12 months, and then gradually reduce the trend. Conclusion After implantation of the absorbable thread into the subcutaneous tissue of the nasal dorsum, the nature of the thread is different from the body’s own tissue, which will affect the soft tissue compliance of the nasal dorsum. The degradation and absorption of the thread will stimulate the infiltration of inflammatory cells and the proliferation of fibroblasts in the surrounding tissue and then form scar tissue, which will affect the design and effect of revision rhinoplasty.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content