west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "WANG Runyang" 1 results
  • Expression and clinical significance of H2AFX gene in lung adenocarcinoma

    Objective To analyze the expression of H2A histone family, member X (H2AFX) gene in lung adenocarcinoma and its influence on prognosis. Methods We analyzed the expression level of H2AFX gene in the tumor tissues (497 cases) and normal adjacent tissues (54 cases) of lung adenocarcinoma patients via The Cancer Genome Atlas. The patients were divided into high expression group and low expression group according to the expression level of H2AFX gene in lung adenocarcinoma samples. The relationship between H2AFX and clinicopathological features of patients was analyzed through logistic regression. Kaplan-Meier survival curve and log-rank test were used to study the correlation between H2AFX expression and the prognosis of lung adenocarcinoma patients. Univariate and multiple Cox regression analyses were performed to determine the prognostic significance of H2AFX expression in lung adenocarcinoma patients. The research also covered H2AFX-related pathways of genes in the development of lung adenocarcinoma with gene set enrichment analysis (GSEA). Results The H2AFX expression was higher in lung adenocarcinoma tissues than that in normal adjacent tissues (P<0.001). Besides, it was significantly correlated with age (P<0.001), T staging (P=0.007), and N staging (P=0.010), but had little to do with M staging or gender (P>0.05). Kaplan-Meier survival curve and log-rank test showed that the survival rate of patients with high H2AFX expression was vastly lower than that of patients with low H2AFX expression (P<0.001). Multiple Cox regression analysis demonstrated that H2AFX could be an independent prognostic factor for lung adenocarcinoma [hazard ratio=1.41, 95% confidence interval (1.11, 1.78), P=0.004]. The results of GSEA displayed that H2AFX was involved in cell cycle, homologous recombination, DNA replication, base excision and repair, spliceosome, mismatch repair, p53 signaling pathway, nucleotide excision and repair, RNA degradation, RNA polymerase, and other pathways. Conclusions The expression of H2AFX gene is high in lung adenocarcinoma, and closely connected to the prognosis, occurrence, and evolution of lung adenocarcinoma. This gene can be one of the new molecular markers and therapeutic targets for lung adenocarcinoma.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content