Intracranial electrographic recording, especially stereoencephalography (SEEG), remains the gold standard for preoperative localization in epilepsy patients. However, this method is invasive and has low spatial resolution. In 1982, magnetoencephalography (MEG) began to be used in epilepsy clinics. MEG is not affected by the skull and scalp, can provide signals with high temporal and spatial resolution, and can be used to determine the epiletogensis zone (EZ) and the seizure onset zone (SOZ). Magnetic source imaging (MSI) is a method that superimposes the MEG data on a magnetic resonance image (MRI) and has become a major tool for presurgical localization. The applicability of MEG data has been largely improved by the development of many post-MRI processing methods in the last 20 years. In terms of the sensitivity of localization, MEG is superior to VEEG, MRI, PET and SPECT, despite inferiority to SEEG. MEG can also assist in the intracranial placement of electrodes and improve preoperative planning. Limitations of MEG include high cost, insensitivity to radiation source, and difficulty in locating deep EZ in the medial regions of the brain. These limitations could be overcome by new generations of equipment and improvement of algorithmics.
Currently, about one-third of patients with anti-epilepsy drug or resective surgery continue to have sezure, the mechanism remin unknown. Up to date, the main target for presurgical evaluation is to determene the EZ and SOZ. Since the early nineties of the last century network theory was introduct into neurology, provide new insights into understanding the onset, propagation and termination. Focal seizure can impact the function of whole brain, but the abnormal pattern is differet to generalized seizure. Brain network is a conception of mathematics. According to the epilepsy, network node and hub are related to the treatment. Graphy theory and connectivity are main algorithms. Understanding the mechanism of epilepsy deeply, since study the theory of epilepsy network, can improve the planning of surgery, resection epileptogenesis zone, seizure onset zone and abnormal node of hub simultaneously, increase the effect of resectiv surgery and predict the surgery outcome. Eventually, develop new drugs for correct the abnormal network and increase the effect. Nowadays, there are many algorithms for the brain network. Cooperative study by the clinicans and biophysicists instituted standard and extensively applied algorithms is the precondition of widely used clinically.
The summary of finding (SoF) table for network meta-analysis (NMA) was developed by the GRADE working group to facilitate and consolidate understanding NMA findings and GRADE certainty of evidence. This paper introduces the development process, the structure of NMA-SoF and limitations. A NMA publication was presented as an example to comprehensively illustrate the application of the NMA-SoF table.
Objective To explore the change of EEG waveform recorded by clinical EEG under different filtering parameters. Methods22 abnormal EEG samples of epilepsy patients with abundant abnormal waveforms recorded in Peking University first hospital were selected as the case group (abnormal group), and 30 normal EEG samples of healthy people with matched sex and age were selected as the control group (normal group). Visual examination and power spectrum analysis were then performed to compare the difference of wave forms and spectrum power under different settings of filter parameter between the two groups. ResultsThe results of visual examination show that, lower high-frequency filtering has an effect on the fast wave composition of EEG and may distort and reduce the spike wave. Higher low-frequency filtering has an effect on the overall background and slow wave activity of EEG and may change the amplitude morphology of some slow waves. The results of power spectrum analysis show that, Compare the difference between the EEG normal group and the abnormal group, the main difference under the settings of 0.5~70Hz was on the θ and α3 frequency band, different brain regions were slightly different. In the central region, the difference in the high frequency band (α3, γ1, γ2) decreases or disappears with the decrease of the high frequency filtering. In the rest of the brain, the difference in the δ band appears gradually with the increase of the low frequency filtering. Compare the difference between frontal area and occipital area under different filter set, for the normal group, under the settings of 0.5 ~ 70 Hz, the difference between two regions is mainly on the θ, γ1 and γ2 band. When high frequency filter reduces, the difference between two regions on high frequency band (γ1, γ2) are gradually reduced or disappeared. And when low frequency filter increases, the difference on δ band appears. For the abnormal group, the difference between frontal and occipital region under the settings of 0.5 ~ 70 Hz is mainly on γ1 and γ2 bands. When the high-frequency filter decreases, the difference between two regions on high-frequency bands are gradually decreased or disappeared. All the results can be corrected by FDR. ConclusionThe results show that the filter setting has a significant influence on EEG results. In clinical application, we should strictly set 0.5 ~ 70 Hz bandpass filtering as the standard.
Diabetic neuropathic pain (DNP) is one of the most common and complex complications of diabetes. In recent years, studies have shown that gut microbiota can regulate inflammatory response, intestinal permeability, glucose metabolism, and fatty acid oxidation, synthesis, and energy consumption by regulating factors such as lipopolysaccharides, short chain fatty acids, bile acids, and branched chain amino acids, achieving the goal of treating DNP. This paper summarizes the relevant mechanisms of gut microbiota in the treatment of DNP, the relevant intervention measures of traditional Chinese and western medicine, in order to provide new ideas for clinical treatment of DNP.
This paper introduced the preferred reporting items for journal and conference abstracts of systematic reviews and meta-analyses of diagnostic test accuracy studies (PRISMA-DTA for abstracts), which was published in BMJ in March 2021. This paper presented the 12 items of checklist, explanations, and examples of complete reporting, to help domestic researchers to report complete and informative abstracts of systematic reviews and meta-analyses of diagnostic test accuracy studies.
Ventilator-associated pneumonia (VAP) is a kind of pneumonia that occurs when artificial airway (tracheal intubation or tracheotomy) is established and mechanical ventilation is accepted. The occurrence of VAP will significantly prolong the ventilation time and hospitalization time of patients, increase the mortality rate and the medical burden. In order to effectively prevent and reduce the occurrence of VAP, the Society for Healthcare Epidemiology of America released the Strategies to Prevent Ventilator-Associated Pneumonia, Ventilator-Associated Events, and Nonventilator Hospital-Acquired Pneumonia in Acute-Care Hospitals: 2022 Update, which is an update of the 2014 version. In order to facilitate the reading and understanding of the medical workers, this article will interpret the infection prevention and control strategies of adult VAP and ventilator-related events.
Transparent reporting of randomized trials is essential to facilitate critical appraisal and interpretation of results. Factorial trials, in which two or more interventions are assessed in the same set of participants, have unique methodological considerations. However, reporting of factorial trials is suboptimal. A consensus-based extension to the consolidated standards of reporting trials (CONSORT) 2010 statement for factorial trials was developed based on the enhancing the quality and transparency of health research (EQUATOR) methodological framework. In the study, we introduced and interpreted the extension of the CONSORT 2010 statement for factorial design in which 16 items were modified and one new item was added and presented an example of a factorial trial in mental health to provide guidance on the reporting of factorial randomized trials.