Objective To investigate the effect of Wnt/β-catenin signal pathway on the apoptosis in steroid-induced avascular necrosis of femoral head (SANFH) in rats. Methods Seventy-two male Sprague Dawley rats (weighing, 200-230 g) were randomly divided into the control group (group A, n=24), the model group (group B, n=24), and the intervening group (group C, n=24). The rats in groups B and C were injected with lipopolysaccharide and methylprednisolone (MPS) to establish the SANFH model. The rats in group C were injected intramuscularly with human recombinant secreted frizzled related protein 1 (SFRP1) [1 μg/(kg·d)] at the first time of MPS administration for 30 days. The rats in group A received saline injection at the same injection time of group B. The general condition of rats in groups B and C was observed during modeling and after modeling. At 2, 4, and 8 weeks after last injection of MPS, 8 rats were sacrificed to harvest the femoral head. Histological staining was performed to evaluate osteonecrosis. Apoptosis was detected via TUNEL staining. The expressions of Wnt/β-cate nin pathway signaling molecules (activated β-catenin and c-Myc) were detected by immunohistochemistry and Western blot. Results Six rats were added in groups B and C because of 6 deaths. The other rats survived to the end of experiment. Normal bone structure was observed in group A; osteonecrosis of bone structure disturbance and disruption of the trabecula were found with time in groups B and C. Group C had the highest empty lacuna rate and apoptosis rate, followed by groups B and A, showing significant difference between groups (P < 0.05). The expression levels of activated β-catenin and c-Myc were significantly lower in group C than groups A and B (P < 0.05), and in group B than group A (P < 0.05). Conclusion Wnt/β-catenin signal pathway is involved in the pathogenesis in early SANFH model and its possible mechanism is to affect the cell cycle and cell apoptosis by the regulation of c-Myc expression.
ObjectiveTo investigate the effects of hypoxia inducible factor 1α (HIF-1α) overexpression on the differentiation of stem cells derived from human exfoliated deciduous teeth (SHED) into vascular endothelial cells.MethodsSHED was isolated from the retained primary teeth donated by healthy children by using collagenase digestion method. The third generation cells were identified by flow cytometry and alizarin red and alkaline phosphatase (ALP) staining after osteogenic differentiation culture. The SHED were divided into blank control group (SHED without any treatment), empty group (SHED infected with empty lentivirus), HIF-1α overexpression group (SHED infected with HIF-1α overexpression lentivirus), Wnt inhibitor group (SHED interfered by IWR-1), and combination group (HIF-1α overexpressed SHED interfered by IWR-1). Real-time fluorescence quantitative PCR (qRT-PCR) and Western blot were used to analyze the expressions of HIF-1α mRNA and protein in the SHED of blank control group, empty group, and HIF-1α overexpression group. Then the SHED in 5 groups were induced differentiation into vascular endothelial cells for 14 days. The expressions of cell surface marker molecule [von Willebrand factor (vWF) and CD31] were detected by flow cytometry. The mRNA expressions of vascular cell adhesion protein 1 (VCAM-1), KDR (Kinase-inserted domain containing receptor), and VE-cadherin (VE) were analyzed by qRT-PCR. The protein expressions of phosphate-glycogen synthasc kinase 3β (p-GSK3β) and β-catenin were analyzed by Western blot. The tube forming ability of induced cells was detected by Matrigel tube forming experiment. The ability of endothelial cells to phagocytic lipid after differentiation was detected by DiI-labeled acetylated low density lipoprotein (DiI-Ac-LDL) phagocytosis.ResultsAfter identification, the cells were SHED. After lentivirus transfection, compared with the blank control group and the empty group, the expressions of HIF-1α mRNA and protein in the HIF-1α overexpression group increased significantly (P<0.05). Compared with the blank control group and the empty group, the expressions of VCAM-1, KDR, and VE mRNA, the percentages of vWF positive cells and CD31 positive cells, and the relative expression of β-catenin protein were significantly higher (P<0.05), the relative expression of p-GSK3β protein was significantly lower (P<0.05), the number of tubules formed and the ability to phagocytic lipids significantly increased (P<0.05) in the HIF-1α overexpression group; while the indicators in the Wnt inhibitor group were opposite to those in the HIF-1α overexpression group (P<0.05). Compared with the HIF-1α overexpression group, the expressions of VCAM-1, KDR, and VE mRNA, the percentages of vWF positive cells and CD31 positive cells, and the relative expression of β-catenin protein were significantly lower (P<0.05), the relative expression of p-GSK3β protein was significantly higher, and the number of tubules formed and the ability of phagocytosis of lipids significantly reduced, showing significant differences between groups (P<0.05).ConclusionOverexpression of HIF-1α can promote SHED to differentiate into vascular endothelial cells by activating Wnt/β-catenin signaling pathway.