west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "XIAO Jie" 4 results
  • Meta-analysis of the long-term efficacy of unilateral versus bilateral screw fixation on thoracolumbar single vertebral fracture

    ObjectiveTo evaluate the long-term effect of unilateral versus bilateral screw placement on thoracolumbar single vertebral fracture by means of meta-analysis.MethodsThe data of China National Knowledge Infrastructure, Wangfang Database, SinoMed, VIP Database for Chinese Technical Periodicals, PubMed, Elsevier Science Direct, EBSCO, Web of Science, and Springer Link were searched by computer, and the literatures related to effect comparison between unilateral and bilateral pedicle screw fixation in thoracolumbar single vertebral fracture were collected, including domestic and foreign published journal literatures and grey literatures such as academic conference reports and dissertations. The retrieval time was from their inception to August 17, 2019. After literature screening, quality evaluation, and data extraction, Stata 12.0 and RevMan 5.0 softwares were used for data analysis.ResultsA total of 12 articles were included, including 7 in English and 5 in Chinese, with a total of 848 patients (424 in the unilateral pediclescrew fixation group and 424 in the bilateral pedicle screw fixation group). The results of meta-analysis showed that: there was no significant difference in any of the main outcome indicators between the two groups, including the ratio of anterior height of fractured vertebra [mean difference (MD)= −0.16%, 95% confidence interval (CI) (−1.20%, 0.88%), P=0.76], postoperative follow-up Cobb angle [MD=−0.17°, 95%CI (−0.50, 0.15)°, P=0.29], postoperative follow-up Visual Analogue Scale score [MD=−0.06, 95%CI (−0.16, 0.04), P=0.24], postoperative follow-up Oswestry Disability Index score [MD=−0.28, 95%CI (−0.66, 0.11), P=0.15], and incidence of complications [relative risk=0.81, 95%CI (0.57, 1.15), P=0.23], but two secondary outcome indicators namely operation time [MD=−33.26 minutes, 95%CI (−51.72, −14.80) minutes, P=0.000 4] in the unilateral pedicle screw fixation group were smaller than those in the bilateral pedicle screw fixation group, whlie there were no statistically significant difference in postoperative length of hospital stay [MD=−1.59 days, 95%CI (−4.53, 1.36) days, P=0.29] and intraoperative blood loss [MD=−74.09 mL, 95%CI (−155.96, 7.77) mL, P=0.08] between the two groups.ConclusionUnilateral and bilateral screw placement of thoracolumbar single vertebral fracture has the same long-term effect, and unilateral screw placement can reduce the number of screw implantation, and shorter operation time, which is more in line with the actual clinical needs.

    Release date:2020-02-24 05:02 Export PDF Favorites Scan
  • Percutaneous pedicle screw fixation and minimally invasive decompression in the same incision for type A3 thoracolumbar burst fracture

    Objective To assess the effectiveness of percutaneous pedicle screw fixation and minimally invasive decompression in the same incision for type A3 thoracolumbar burst fracture. Methods Between May 2014 and February 2016, 43 cases of type A3 thoracolumbar burst fracture with or without nerve symptoms were treated with pedicle screw fixation and neural decompression. Of them, 21 patients underwent percutaneous pedicle screw fixation and minimally invasive decompression in the same incision (percutaneous group), and the other 22 patients underwent traditional open surgery (open group). There was no significant difference in gender, age, cause of injury, fractures level, preoperative American Spinal Injury Association (ASIA) grade, thoracolumbar injury classification and severity (TLICS) score, load-sharing classification, height of injury vertebrae, kyphotic Cobb angle, and spinal canal encroachment between 2 groups (P>0.05). The length of soft tissue dissection, operation time, intraoperative blood loss, postoperative drainage, X-ray exposure times, and incision visual analogue scale (VAS) score at 1 day after operation were recorded and compared. At last follow-up, Japanese Orthopaedic Association (JOA) score and low back pain VAS score were recorded and compared respectively. The ASIA grade recovery was evaluated; the height of injury vertebrae, kyphotic Cobb angle, and spinal canal encroachment were assessed postoperatively. Results Percutaneous group was significantly better than open group in the length of soft tissue dissection, intraoperative blood loss, postoperative drainage, and incision VAS at 1 day after operation (P<0.05), but no significant difference was found in operation time between 2 groups (P>0.05); however, X-ray exposure times of open group were significantly better than that of percutaneous group (P<0.01). The patients were followed up 12 to 19 months (mean, 15.1 months) in 2 groups. All patients achieved effective decompression. No complications of iatrogenic neurological injury and internal fixation failure occurred. The height of injury vertebrae, kyphotic Cobb angle, and spinal canal encroachment of the fractured vertebral body were significantly improved at 3 days after operation when compared with preoperative ones (P<0.05), but no significant difference was found between 2 groups (P>0.05). At last follow-up, JOA score and low back pain VAS score of percutaneous group were significantly better than those of open group (P<0.05). The neurological function under grade E was improved at least one ASIA grade in 2 groups, but no significant difference was shown between 2 groups (Z=0.480, P=0.961). Conclusion Percutaneous pedicle screw fixation and minimally invasive decompression in the same incision for type A3 thoracolumbar burst fracture has satisfactory effectiveness. And it has the advantages of minimal trauma, quick recovery, safeness, and reliableness.

    Release date:2017-07-13 11:11 Export PDF Favorites Scan
  • Design and clinical application of a new extracorporeal reduction device for percutaneous pedicle screw fixation in treatment of thoracolumbar fractures

    Objective To design a new extracorporeal reduction device for percutaneous pedicle screw fixation of thoracolumbar fractures (short for “new reduction device”), and to evaluate its effectiveness. Methods According to the mechanism of thoracolumbar fractures and biomechanics characteristic of reduction, a new reduction device was designed and used in a combination with long U-shaped hollow pedicle screw system. Between January 2014 and January 2016, 36 patients (group A) with single segment thoracolumbar fracture without neurological complications underwent percutaneous pedicle screw fixation, and the clinical data were compared with those of another 39 patients (group B) with thoracolumbar fracture underwent traditional open pedicle screw fixation. There was no significant difference in gender, age, cause of injury, classification of fractures, segments of fractures, injury to operation interval, height percentage of injury vertebrae, and kyphotic angle between 2 groups (P>0.05). The 2 groups were compared in terms of operation time, length of incision, intraoperative blood loss, drainage volume, visual analogue scale (VAS) at postoperative 24 hours, fluoroscopy frequency, ambulation time, height percentage of injury vertebrae, kyphotic angle and correction. Results Group A was significantly better than group B in the operation time, length of incision, intraoperative blood loss, drainage volume, VAS score at postoperative 24 hours, and ambulation time (P<0.05). However, fluoroscopy frequency of group B was significantly less than that of group A (P<0.05). All patients were followed up 11.2 months on average (range, 7-15 months). There was no intraoperative and postoperative complications of iatrogenic nerve injury, infection, breakage of internal fixation. Mild pulling-out of pedicle screws occurred in 1 case of group A during operation. The kyphotic angle and height percentage of the fractured vertebral body were significantly improved at 3 days after operation when compared with preoperative ones (P<0.05), but no significant difference was found between 2 groups at 3 days after operation (P>0.05). Conclusion Minimally invasive extracorporeal reduction device for percutaneous pedicle screw fixation is an effective and safe treatment of thoracic vertebrae and lumbar vertebrae fractures, because of little trauma, less bleeding, and quicker recovery.

    Release date:2017-02-15 09:26 Export PDF Favorites Scan
  • Effectiveness comparison of low-temperature bone cement perfusion before and after improvement in percutaneous vertebroplasty

    ObjectiveTo discuss the safety and effectiveness of the improved technique by comparing the effects of low temperature bone cement infusion before and after the improvement in the percutaneous vertebroplasty (PVP).MethodsThe clinical data of 170 patients (184 vertebrae) with osteoporotic vertebral compression fracture who met the selection criteria between January 2016 and January 2018 were retrospectively analyzed. All patients were treated with PVP by low-temperature bone cement perfusion technology. According to the technical improvement or not, the patients were divided into two groups: the group before the technical improvement (group A, 95 cases) and the group after the technical improvement (group B, 75 cases). In group A, the patients were treated by keeping the temperature of bone cement at 0℃ and parallel puncture; in group B, the patients were treated by increasing the temperature of bone cement or reducing the time of bone cement in ice salt water and cross puncture. There was no significant difference in gender, age, disease duration, T value of bone mineral density, operative segment, and preoperative vertebral compression rate, visual analogue scale (VAS) score between the two groups (P>0.05). CT examination was performed immediately after operation, and the leakage rate of bone cement was calculated. The amount of bone cement perfusion and the proportion of bone cement in contact with the upper and lower endplates at the same time were compared between the two groups. The vertebral compression rate was calculated and the VAS score was used to evaluate the pain before operation, at immediate after operation, and last follow-up.ResultsThere was no complication such as incision infection, spinal nerve injury, or pulmonary embolism in both groups. There was no significant difference in the amount of bone cement perfusion between groups A and B (t=0.175, P=0.861). There were 38 vertebral bodies (36.89%) in group A and 49 vertebral bodies (60.49%) in group B exposed to bone cement contacting with the upper and lower endplates at the same time, showing significant difference (χ2=10.132, P=0.001). Bone cement leakage occurred in 19 vertebral bodies (18.45%) in group A and 6 vertebral bodies (7.41%) in group B, also showing significant difference (χ2=4.706, P=0.030). The patients in group A and group B were followed up (13.3±1.2) months and (11.5±1.1) months, respectively. The vertebral compression rates of the two groups at immediate after operation were significantly lower than those before operation (P<0.05), but the vertebral compression rate of group A at last follow-up was significantly higher than that at immediate after operation (P<0.05), and there was no significant difference in group B between at immediate after operation and at last follow-up (P>0.05). The VAS scores of the two groups at immediate after operation were significantly lower than those before operation (P<0.05); but the VAS scores of group A at last follow-up were significantly higher than those at immediate after operation (P<0.05) and there was no siginificant difference in group B (P>0.05). There was no significant difference in VAS scores between the two groups at immediate after operation (t=0.380, P=0.705); but at last follow-up, VAS score in group B was significantly lower than that in group A (t=3.627, P=0.000).ConclusionThe improved advanced low-temperature bone cement perfusion technology during PVP by increasing the viscosity of bone cement combined with cross-puncture technology, can reduce bone cement leakage, improve the distribution of bone cement in the vertebral body, and reduce the risk of vertebral collapse, and achieve better effectiveness.

    Release date:2020-04-29 03:03 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content