west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "XIAO Wendong" 2 results
  • Mental fatigue state recognition method based on convolution neural network and long short-term memory

    The pace of modern life is accelerating, the pressure of life is gradually increasing, and the long-term accumulation of mental fatigue poses a threat to health. By analyzing physiological signals and parameters, this paper proposes a method that can identify the state of mental fatigue, which helps to maintain a healthy life. The method proposed in this paper is a new recognition method of psychological fatigue state of electrocardiogram signals based on convolutional neural network and long short-term memory. Firstly, the convolution layer of one-dimensional convolutional neural network model is used to extract local features, the key information is extracted through pooling layer, and some redundant data is removed. Then, the extracted features are used as input to the long short-term memory model to further fuse the ECG features. Finally, by integrating the key information through the full connection layer, the accurate recognition of mental fatigue state is successfully realized. The results show that compared with traditional machine learning algorithms, the proposed method significantly improves the accuracy of mental fatigue recognition to 96.3%, which provides a reliable basis for the early warning and evaluation of mental fatigue.

    Release date: Export PDF Favorites Scan
  • Deep learning approach for automatic segmentation of auricular acupoint divisions

    The automatic segmentation of auricular acupoint divisions is the basis for realizing intelligent auricular acupoint therapy. However, due to the large number of ear acupuncture areas and the lack of clear boundary, existing solutions face challenges in automatically segmenting auricular acupoints. Therefore, a fast and accurate automatic segmentation approach of auricular acupuncture divisions is needed. A deep learning-based approach for automatic segmentation of auricular acupoint divisions is proposed, which mainly includes three stages: ear contour detection, anatomical part segmentation and keypoints localization, and image post-processing. In the anatomical part segmentation and keypoints localization stages, K-YOLACT was proposed to improve operating efficiency. Experimental results showed that the proposed approach achieved automatic segmentation of 66 acupuncture points in the frontal image of the ear, and the segmentation effect was better than existing solutions. At the same time, the mean average precision (mAP) of the anatomical part segmentation of the K-YOLACT was 83.2%, mAP of keypoints localization was 98.1%, and the running speed was significantly improved. The implementation of this approach provides a reliable solution for the accurate segmentation of auricular point images, and provides strong technical support for the modern development of traditional Chinese medicine.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content