Objective To construct the mouse NF-κB P65 subunit expression plasmid, and identify its biological activity. Methods NF-κB P65 siRNA retrovirus expression vectors were reconstructed by molecular clone technology. Recombinant vectors were transfected into 293E package cells and virus suspension was collected. RT-PCR was used to detect the expression level of NF-κB P65 mRNA and TNF-α mRNA at different time-point of LPS stimulation. Western blot was performed to analyze the protein level of NF-κB P65. ELISA was applied to detect the expression level of TNF-α released by LPS-stimulated J774A.1. Results NF-κB P65 siRNA retrovirus expression vectors of mouse were successfully constructed. From2 hours after the stimulation of LPS, the expression level of NF-κB P65 mRNA of the siRNA group was obviously lower than the scramble control group ( 0.91 ±0.03 vs. 1.02 ±0.02, Plt;0.01) . At24,36, 48 and 72 hours after the LPS stimulation, the expression level of NF-κB P65 protein of the siRNA group was significantly decreased compared with the scramble control group ( 0.97 ±0.02 vs. 1.01 ±0.01, 0.94 ± 0.01 vs. 1.02 ±0. 01,0.94 ±0.02 vs. 1.02 ±0.01, 0.93 ±0.01 vs. 1.00 ±0.02, Plt;0. 05) . At 2, 6, 12, 24 hours after the LPS stimulation, both the expression level of TNF-α mRNA and the content of TNF-α in the culture medium supernatant of the siRNA group were lower than the scramble control group ( Plt;0. 01) . Conclusions The construction of NF-κB P65 siRNA retrovirus expression vectors is feasible. Inflammation factors in mouse monocyte-macrophages are significantly inhibited after NF-κB expression is depressed by RNA interference technology, which may be applied to prevent and treat excessive inflammatory reaction in acute lung injury.