west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "YAN Tingfang" 2 results
  • An animal experimental study on domestic robot-assisted total knee arthroplasty

    ObjectiveTo evaluate the performance, safety, and precision of the Yuanhua robotic-assisted total knee arthroplasty system (YUANHUA-TKA) through animal experiments, which will provide reference data for human clinical trials.MethodsSix 18-month-old goats, weighing 30-35 kg, were used in this study. The experimental study was divided into two parts: the preoperative planning and intraoperative bone resection. CT scans of the goats’ lower extremities were firstly performed before the experiments. Then the CT scans were segmented to generate the femoral and tibial three-dimensional (3D) models in the YUANHUA-TKA system. The volumes and angles of each resection plane on the femur and tibia were planned. The bone resection was finally implemented under the assistance of the YUANHUA-TKA system. After completing all bone resections, the lower extremities of each goat were taken to have CT scans. By comparing the femoral and tibial 3D models before and after the experiments, the actual bone resection volumes and angles were calculated and compared with the preoperative values.ResultsDuring the experiments, no abnormal bleeding was found; the YUANHUA-TKA system ran smoothly and stably and was able to stop moving and keep the osteotomy in the safe zone all the time. After the experiment, the resection planes were observed immediately and found to be quite flat. There was no significant difference between the planned and actual osteotomy thickness and osteotomy angle (P>0.05); the error of the osteotomy thickness was less than 1 mm, and the error of the osteotomy angle was less than 2°.ConclusionThe YUANHUA-TKA system can assist the surgeons to perform osteotomy following the planned thickness and angle values. It is expected to assist surgeons to implement more accurate and efficient osteotomy in the future clinical applications.

    Release date:2020-11-27 06:47 Export PDF Favorites Scan
  • A cadaveric experimental study on domestic robot-assisted total knee arthroplasty

    ObjectiveTo simulate and validate the performance, accuracy, and safety of the Yuanhua robotic-assisted total knee arthroplasty system (YUANHUA-TKA) through cadaver-based experiment, thus optimizing the robotic system for the future human clinical application.MethodsSix unilateral adult cadaver specimens of the lower limbs were scanned by three-dimensional CT before the experiment, and then the three-dimensional models of femur and tibia were obtained by using the preoperative software of YUANHUA-TKA system, so as to plan the type of prosthesis implant, the osteotomy volume and osteotomy angles [hip-knee-ankle angle (HKA), coronal frontal femoral component (FFC) and frontal tibial component (FTC)], the ideal value of HKA was set to 180°, and of FFC and FTC were set to 90°, respectively. The operator could further confirm the osteotomy plan according to the intraoperative situation before osteotomy, and then install the prosthesis after completing the osteotomy in each plane with the assistance of YUANHUA-TKA system. At last, the X-ray films of hip joint, knee joint, and ankle joint were taken and stitched into the full length X-ray film of the lower limb, and HKA, coronal FFC and FTC were measured.ResultsDuring the experiment, YUANHUA-TKA system ran stably. All sections of femur and tibia were smooth and no ligament injury was found. After operation, the HKA was 177.1°-179.7°, FFC was 87.9°-91.4°, and FTC was 87.3°-91.4°, which were within ±3° from the ideal values of preoperative planning.ConclusionThe YUANHUA-TKA system can assist the surgeon to carry out precise osteotomy according to the preoperative planned value, which has a good auxiliary effect for total knee arthroplasty. It is expected to assist joint surgeons to improve the surgical accuracy in clinical application.

    Release date:2021-04-27 09:12 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content