west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "YAN Tingting" 2 results
  • Preparation and properties of silica/hydroxyapatite whiskers porous ceramics scaffold

    Objective To investigate the preparation and properties of the novel silica (SiO2)/hydroxyapatite (HAP) whiskers porous ceramics scaffold. Methods The HAP whiskers were modified by the SiO2 microspheres using the Stöber method. Three types of SiO2/HAP whiskers were fabricated under different factors (for the No.1 samples, the content of tetraethoxysilane, stirring time, calcination temperature, and soaking time were 10 mL, 12 hours, 560℃, and 0.5 hours, respectively; and in the No.2 samples, those were 15 mL, 24 hours, 650℃, and 2 hours, respectively; while those in the No.3 samples were 20 mL, 48 hours, 750℃, and 4 hours, respectively). The phase and morphology of the self-made HAP whisker and 3 types of SiO2/HAP whiskers were detected by the X-ray diffraction analysis and scanning electron microscopy. Taken the self-made HAP whisker and 3 types of SiO2/HAP whiskers as raw materials, various porous ceramic materials were prepared using the mechanical foaming method combined with extrusion molding method, and the low-temperature heat treatment. The pore structure of porous ceramics was observed by scanning electron microscopy. Its porosity and pore size distribution were measured. And further the axial compressive strength was measured, and the biodegradability was detected by simulated body fluid. Cell counting kit 8 method was used to conduct cytotoxicity experiments on the extract of porous ceramics. Results The SiO2 microspheres modified HAP whiskers and its porous ceramic materials were prepared successfully, respectively. In the SiO2/HAP whiskers, the amorphous SiO2 microspheres with a diameter of 200 nm, uniform distribution and good adhesion were attached to the surface of the whiskers, and the number of microspheres was controllable. The apparent porosity of the porous ceramic scaffold was about 78%, and its pore structure was composed of neatly arranged longitudinal through-holes and a large number of micro/nano through-holes. Compared with HAP whisker porous ceramic, the axial compressive strength of the SiO2/HAP whisker porous ceramics could reach 1.0 MPa, which increased the strength by nearly 4 times. Among them, the axial compressive strength of the No.2 SiO2/HAP whisker porous ceramic was the highest. The SiO2 microspheres attached to the surface of the whiskers could provide sites for the deposition of apatite. With the content of SiO2 microspheres increased, the deposition rate of apatite accelerated. The cytotoxicity level of the prepared porous ceramics ranged from 0 to 1, without cytotoxicity. Conclusion SiO2/HAP whisker porous ceramics have good biological activity, high porosity, three-dimensional complex pore structure, good axial compressive strength, and no cytotoxicity, which make it a promising scaffold material for bone tissue engineering.

    Release date: Export PDF Favorites Scan
  • Cardiac rehabilitation for patients with aortic stenosis undergoing transcatheter aortic valve replacement

    Aortic stenosis (AS) is the most common primary valve lesion requiring surgery or transcatheter intervention in modern era. Its prevalence is rising rapidly as a consequence of the aging population. Transcatheter aortic valve replacement (TAVR) as a therapy option for older high-risk symptomatic severe AS patients has emerged and is currently extending its indications towards surgery intermediate- and low-risk subjects. Considering the common characteristics of frailty and high comorbidity among AS patients, cardiac rehabilitation (CR) has been proven to improve not only survival but also quality of life in previous reports. CR as a classⅠ recommendation in guidelines for the prevention and treatment of cardiovascular disease has been widely used in clinical practice. The purpose of this article is to sort out the current CR programs for TAVR patients in global medical management, and explore the CR optimization program fit for China medical model in post COVID-19 pandemic era.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content