Objective To investigate the methods and effectiveness of ear reconstruction for the microtia patients with craniofacial deformities. Methods Between July 2000 and July 2010, ear reconstruction was performed with tissue expander and autogenous costal cartilages in 1 300 microtia patients with degree II+ hemifacial microsoma, and the clinical data were reviewed and analyzed. There were 722 males and 578 females, aged 5 years and 8 months to 33 years and 5 months (median, 12 years and 2 months). The expander was implanted into the retroauricular region in stage I; ear reconstruction was performed after 3-4 weeks of expansion in stage II; and reconstructed ear reshaping was carried out at 6 months to 1 year after stage II in 1 198 patients. Results Of 1 300 patients, delayed healing occurred in 28 cases after stage II, healing by first intention was obtained in the other 1 272 cases, whose new ears had good position and appearance at 1 month after stage II. After operation, 200 cases were followed up 1-9 years (mean, 3 years). One case had helix loss because of trauma, and 1 case had the new ear loss because of fistula infection. At last follow-up, the effectiveness were excellent in 110 cases, good in 65 cases, and fair in 23 cases with an excellent and good rate of 88.4%. Conclusion It is difficulty in ear reconstruction that the reconstructed ear is symmetrical to the contralateral one in the microtia patients with degree II+ hemifacial microsoma. The key includes the location of new ear, the fabrication of framework, and the utilization of remnant ear.
【Abstract】 Objective To summarize different treatments of the residual ear in auricular reconstruction, toinvestigate the reasonable appl ications of the residual ear. Methods From September 2005 to July 2006, 128 patients(79 males, 49 females; aging 5-21 years with an average of 11 years)with unilateral microtia underwent the staged repair. In the patients, there were 44 cases of left-unilaterally microtia and 84 cases of right-unilaterally microtia. The residual ears looked l ike peanut in 56 patients, l ike sausage in 35 patients, l ike boat in 27 patients, and l ike shells in 10 patients. Among all the patients, the external acoustic meatus was normal in 5 patients, stenosis in 11 patients, and atresia in 112 patients. According to auricular developmental condition, the patients were divided into three types: 17 cases of type I, 98 cases of type II, and 13 cases of type III. In the first stage operation, a 50 mL kidney-l iked expander was implanted into post aurem subcutaneous tissue. The residualear whose superior extremity was close to the hair l ine was treated. The middle and superior part of the residual ear was cut. The redundant residual auricular cartilage was removed. In the second stage operation, the inferior part of the cartilage frame was covered by the middle and superior part of the residual ear. According to the location of the residual ear, “V-Y” plasty, “Z”-plasty and reversal of the residual ear were used to correct the location of the residual ear. In the third stage operation, the remained residual ear was used to reconstruct crus of hel ix or cover the wound surface which was resulted from repairing the reconstructed ear. Results The residual ears which were reshaped and transferred had good blood circulation. All residual ears were survival. The wounds healed by first intention. The follow-up for 8-15 months showed that the auricular lobule of the reconstructed ear was turgor vital is and natural. The locations of the reconstructed ear and normal side ear were symmetry. The auricular lobules of the reconstructed ear survived well. The reconstructed crus of hel ix, hel ix, antihel ix and triangular fossawere clear. The results were satisfactory. Conclusion Using residual ear reasonably is an important procedure of successful auricular reconstruction and the symmetry of the reconstructed ear and uninjured side ear.
ObjectiveBy comparing the mechanics of human auricular cartilage, polyurethane elastic material, and high density polyethylene material (Medpor), to produce theoretical proof on choosing optimal artificial auricular scaffold materials.MethodsThe experimental materials were divided into 3 groups with 6 samples in each: the auricular cartilage group (group A), the polyurethane elastic material group (group B), and the Medpor group (group C). With an Instron5967 mechanical testing machine, compression and tensile testing were performed to respectively measure values of compression parameters (including yield stress, yield load, elastic modulus, yield compressibility, compressibility within 2 MPa, and compression stress within 10% strain) and values of tensile parameters (including yield stress, yield load, elastic modulus, yield elongation, elongation within 2 MPa, tensile stress within 1% strain) for comparison.ResultsCompression testing: no obvious yield points were observed in the whole process in samples of group B, while obvious yield points were observed in samples of groups A and C. There was no significant difference between groups A and C with respect to yield stress and yield load (P>0.05); while the yield compressibility in group C was significantly lower than that in group A (P<0.05) and the elastic modulus in group C was significantly higher than that in group A (P<0.05). There was a significant difference with respect to compressibility within 2 MPa of materials among the 3 groups (P<0.05), the high, medium, and low values go to groups B, A, and C respectively. The compression stress within 10% strain in group C was significantly higher than that in groups A and B (P<0.05), and there was no significant difference between that in groups A and B (P>0.05). Tensile testing: the materials in group B had extremely high tensile strength. The yield stress in groups A and B was significantly higher than that in group C (P<0.05), and the elastic modulus and tensile stress within 1% strain were significantly lower than those in group C (P<0.05); but no significant difference was found between those in groups A and B (P>0.05). There was no significant difference with respect to yield load among the 3 groups (P>0.05); but there was significant difference with respect to yield elongation among the 3 groups (P<0.05), and the high, medium, and low values go to groups B, A, and C respectively. The elongation within 2 MPa in group B was significantly higher than that in groups A and C (P<0.05), and there was no significant difference between that in groups A and C (P>0.05).ConclusionCompared with the Medpor, the polyurethane elastic material is a more ideal artificial auricular scaffold material.
ObjectiveTo explore the anthropometric changes of the auricle after auricular cartilage unfolding in moderate concha-type microtia patients, so as to provide the basis to help evaluate surgical timing and prognostic.MethodsA total of 33 children with moderate concha-type microtia, who were treated with auricular cartilage unfolding between October 2016 and September 2018 and met the inclusive criteria, were included in the study. There were 24 boys and 9 girls with an average age of 1.4 years (range, 1-3 years). Sixteen cases were left ears and 17 cases were right ears. The follow-up time was 12-23 months (mean, 17.5 months). The affected auricular detailed structures were observed and quantitatively analyzed before operation and at immediate after operation. The width, length, and perimeter of auricle before operation and at immediate after operation and at last follow-up were noted with three dimensional-scanning technology. The normal auricle was noted as control.ResultsThere were (7.5±1.0) and (11.3±0.8) structures of the affected auricle at pre- and post-operation, respectively, showing significant difference between pre- and post-operation (t=23.279, P=0.000). The length, width, and perimeter of the affected auricle constantly increased after operation, and there were significant differences between pre-operation and immediately after operation and between immediately after operation and last follow-up (P<0.05). The differences of length, width, and perimeter of the affected auricle between immediately after operation and last follow-up were (3.13±1.44), (2.44±0.92), and (8.50±3.76) mm, respectively. And the differences of length, width, and perimeter of the normal auricle between pre-operation and last follow-up were (3.16±1.54), (2.35±0.86), and (9.79±4.60) mm, respectively. There was no significant difference in the differences of length, width, and perimeter between the affected auricle and the normal auricle (P>0.05).ConclusionThe auricular cartilage unfolding in treatment of the moderate concha-type microtia can receive more ear structures and increase auricle sizes, which make it possible for free composite tissue transplantation. In addition, the affected and the contralateral normal auricles have a very similar growth rate and it offers the theoretical foundation for the early treatment for moderate concha-type microtia.