ObjectiveTo explore the predictive value of a simplified signs scoring system for the severity and prognosis of patients with coronavirus disease 2019 (COVID-19). Methods Clinical data of 1 605 confirmed patients with COVID-19 from January to May 2020 in 45 hospitals of Sichuan and Hubei Provinces were retrospectively analyzed. The patients were divided into a mild group (n=1150, 508 males, average age of 51.32±16.26 years) and a severe group (n=455, 248 males, average age of 57.63±16.16 years). ResultsAge, male proportion, respiratory rate, systolic blood pressure and mean arterial pressure in the severe group were higher than those in the mild group (P<0.05). Peripheral oxygen saturation (SpO2) and Glasgow coma scale (GCS) were lower than those in the mild group (P<0.05). Multivariate logistic regression analysis showed that age, respiratory rate, SpO2, and GCS were independent risk factors for severe patients with COVID-19. Based on the above indicators, the receiver operating characteristic (ROC) curve analysis showed that the area under the curve of the simplified signs scoring system for predicting severe patients was 0.822, which was higher than that of the quick sequential organ failure assessment (qSOFA) score and modified early warning score (MEWS, 0.629 and 0.631, P<0.001). The ROC analysis showed that the area under the curve of the simplified signs scoring system for predicting death was 0.796, higher than that of qSOFA score and MEWS score (0.710 and 0.706, P<0.001). ConclusionAge, respiratory rate, SpO2 and GCS are independent risk factors for severe patients with COVID-19. The simplified signs scoring system based on these four indicators may be used to predict patient's risk of severe illness or early death.