检测结直肠癌患者血清巨噬细胞集落刺激因子(M-CSF)的含量并探讨其临床意义。方法:采用酶联免疫吸附分析法(ELISA)对62例经病理证实的术前结直肠癌患者、40例结直肠良性病患者和40例健康体检者血清M-CSF水平进行检测。结果:结直肠癌患者血清M-CSF水平明显高于结直肠良性病患者和健康体检者(Plt;0.01);结直肠癌患者血清M-CSF水平与肿瘤分期、淋巴结转移及远处转移有关(Plt;0.05),与性别、年龄、分化程度不相关(Pgt;0.05)。结论:M-CS与结直肠癌的肿瘤分期、淋巴结转移及远处转移有关,可能是一个判断结直肠癌预后的生物学指标。
【Abstract】ObjectiveTo investigate the molecular mechanism of peritoneal dissemination of gastric cancer. MethodsLiteratures in recent years about mechanisms of peritoneal metastasis in gastric cancer were reviewed and summarized.ResultsPeritoneal metastasis related to viability of cancer cells and peritoneal characteristics. Moreover, it is necessary that many adhesive moleculars, protein hydrolase, cell factors and vascular factors involved in peritoneal metastasis.ConclusionPeritoneal metastasis of gastric cancer was induced by multiple factors together.
Objective To observe the changes in the peripheral blood T lymphocyte subsets and the histomorphology of the transplanted tissues in the rabbits in the early stage after transplantation of the tissue engineered boneconstituted by the biologically-derived scaffold and to confirm the feasibility of the biologicallyderived materials as a scaffold in the bone tissue engineering. Methods Forty-eight healthy New Zealand rabbits (weight, 2.0-2.5 kg) with a 1-cm defect were equally and randomly divided into 4 groups: Groups A-D. The partial demineralized freeze-dried bone (PDFDB), the tissue engineered bone constructed by the osteoblasts derived from the lactant rabbit periosteum as a seeding cell, the xenogeneic cancellous bone undergoing the antigen self-digestion, partial demineralization and freeze-driedprocess as a scaffold, and the fresh xenogeneic allografting bone were respectively transplanted into the segmental defects of the rabbit radii in Groups A-D.To examine the effects of the 4 different materials, the flow cytometry was used to observe the changes in the T lymphocyte subsets in the rabbit peripheral blood at 1, 2, and 4 weeks after the operations and to examine the osteogenesis achieved by the 4 materials, the histological observations were also performed at 2, 4, 8, and 12 weeks after the operations. Results Two weeks after the tissue engineered bone transplantation in Group B, the osteoblasts and chondroblasts were found in the apertures of the scaffold, the new bone formation could be observed, the osteoclasts could be seen in the peripheral zone, and some of the netlike frameworks were destroyed and absorbed. Four weeks after the operation, the histological observation revealed that the osteocartilagionous callus turned into a woven bone. The peripheral blood T lymphocyte subsets of CD4+ and CD8+ were significantly greater in number 1-2 weeks after the operations and in Groups A and B than before the operations and in the other groups (.Plt;0.05);4 weeks after the operations the T lymphocyte subset of CD4+ was only slightly greater in number than before the operations, but with no statistically significant difference (Pgt;0.05). In Group C, the increase of the T lymphocyte subsets of CD4+ and CD8+ was not significant after the operation (Pgt;0.05). The T lymphocyte subsets of CD4+ and CD8+ were significantly greater in number 1, 2 and 4 weeks after the operations and in Group D than before the operation and in the other groups (Plt;0.05). Conclusion The tissue engineered bone constructed by the partial demineralized freezedried bone as a scaffold does not cause a serious immunologic rejection in the early stage after the transplantation and does not affect its good ability to repair the bone defect. The biologicallyderived bone canbe used as a scaffold in the bone tissue engineering.
Objective To review and summarize the latest development of the therapy for the Duchenne muscular dystrophy (DMD). Methods Therecentlypublished articles related to the therapies for DMD were extensively reviewed and briefly summarized. Results The therapeutic approaches for DMD included the gene therapy, the cell therapy, and the pharmacological therapy. The gene therapy and the cell therapy were focused on the treatment for the cause of DMD by the delivery of the missing gene, the modification of the mutated gene, and the transfer of the normal cells including the stem cells, while the pharmacological therapy dealt with the downstream events caused by the dystrophin gene defect, slowed down the pathologic progress of DMD, and improved the DMD patient’s life quality and life span, by medication and other factor treatments. Conclusion There is still no cure for DMD because of various difficulties in replacing or repairing thedefected gene and of the multifaceted nature of the severe symptoms. Therefore,it is imperative for us to find out a more effective treatment that can solve these problems.
Objective To review the latest development of amniotic membrane andits application. Methods Related literatures on the development of amniotic membrane and its application were extensively reviewed and summarized. Results There were amniotic epithelial cells and many growth factors in the outer layer of amniotic membrane and there were many kinds of collagen in the basement. The special structure promoted the growth of many kinds of cells. It was widely used in ophthalmology. Conclusion As it is easily available, compatible, cheap in price, low in antigenicity, and able to promote the growth of many kinds of cells, with few ethical problems involved, amniotic membrane will be more and more widely applied.
Objective To study the differentiation of the human osteoblasts during the construction of the tissue engineered periosteum with the human acellular amniotic membrane(HAAM).Methods To construct the tissue engineered periosteum (n=60) with HAAM, the human fetal osteoblasts were used. The fetal osteoblasts were cultured for 2, 4, 6, 8, and10 days, and then their total RNA was extracted, which were reversely transcripted to cDNA. The realtime PCR analysis was used to reveal Cbfal and Osterix, and the cycle threshold (Ct) was also measured. The simplycultured osteoblasts were used as the control group (n=20).Results The expression of Cbfa1 was higher in the experimental group on the 2nd day when compared with that on the 4th, 6th, and 8th day(P<0.05). The same result existed on the 10th day when compared with that on the 4th and 8th day. The expression of Osterix increased and was highest on the 8th day when compared with the other results(P<0.05). Both of the 2 gene expressions were decreased in the control group when compared with those in the experimental group, but with no significant difference(P>0.05). Conclusion Cbfa1 and Osterix can be normally expressed by the osteoblasts after their integration with HAAM. As a scaffold, HAAM can be used to keep the osteoblast phenotype and differentiation with an osteoconductive ability. Such a cell-scaffold complex may provide a basis for the osteogenesis.
Objective To investigate the effect of WO-1 on the proliferation and differentiation of human embryonic osteoblasts (HEO) and to provide research methods of bone tissue engineering. Methods HEO were isolated from periosteum and calvaria and then cultrued in vitro. The doseeffect relationship between WO-1 concentration and biological effect of HEO was evaluated by growth curve and 3 H-TdR count. The effect of WO-1 on cell activity and proliferation was investigated by cloning efficiency,cell cycle analysis was determined by flow cytometer and morphological was examined through transmission electron microscope. Moreover, the effect of WO-1 on osteoblastic function was evaluated at protein and mRNA levels by ALP activity, 3 H-proline incorporation, osteocalcin secretion (RIA) and mRNA expression of type I collagen and osteocalcin (RT-PCR). Results The proliferation of HEO was inhibited in high concentration of WO-1,while it was promoted in low concentration of WO-1. The optimal dose was 8 μg/ml, and there was dose-effect relationship in the certain range of WO-1 concentration (0.25 μg/ml to 8 μg/ml). In 8 μg/ml of WO-1, the cloning efficiency and cloning volume of HEO were inereased, population doubling time was decreased.All indexes of ostoblastic function including ALP activity, type I collagen synthesis and osteocalcin secertion were inereased, the more sufficed cell organs were observed under transmission electron microscope than control group(P<0.05). Conclusion WO-1 can promote the cell activity and proliferation of HEO cultured in vitro inlow concentration, enhance the synthesis of extracellular mamix, such as type Icollagen and osteocalcin, and accelerate the mineralization of osteoid. WO-1 can be used as a stimulant of proliferation and differentiation of HEO in the research of bone tissue engineering, which provide the theoretical basis in clinical application.
Objective To review the recent researches of basic fibroblast growth factor (bFGF) in tendon tissue engineering. Methods Recentoriginal related literature was extensively reviewed and analyzed. Results bFGF played an important role in establishing standard tendon tissue engineering cell lines, inducing the compound and analysis of extracellular matrix, enhancing interactions between cells and extracellular matrix and accelerating tissue engineering materials’ neovascularization. Conclusion The progresses in increasing endogenetic bFGF expression, controlling the release of exogenous bFGF and improving the bioutilization of bFGF has laid foundation for wider use of bFGF in tendon tissue engineering.
Objective To review the information of platelet gel used in the basic and clinical research in reparative and reconstructive surgery.Methods Literature about platelet gel used on the basic and clinical research was obtained through searching medical data and Internet. The effect of platelet gel on repairing and reconstructing the function and structure of tissue and organ was analyzed. Results Platelet gel had many growth factors and had the ability to improve wound healing and regenesis of bone and other tissues. Conclusion Platelet gel is widely available and almost genuine and is able to improve regenesis of many kinds of tissues. Extensive and intensive research should be made on itsclinical application.
Objective To develop a new tissue engineering bone material which has an antiinfective function. Methods Collagen loaded bio-derived bone material was made by using type I collagen and allograft bone. WO-1was absorbed to collagen loaded bio-derived bone, then the morphological feature of the new bone material was observed by scanning electronic microscopy.3 H tetracycline was diluted by WO-1 solution, and was absorbed to collagen loaded bio-derived bone,then the releasing kinetics of WO-1 was detected by 3 Htetracycline in vitro. WO-1 bioderived bone material was grafted into a culturemedium with staphylococcus aureus, escherichia coli, and pseudomonas aeruginosato observe its bacteriostasis ability. WO-1 bio-derived bone material was grafted into radius of defected rabbits, the concentration of WO-1 was detected onthe 9th, 16th, 23th, and 30th day byHLPC in blood, in bone and in muscle. The bacteriostasis ability of WO-1 loaded bio-derived bone was tested in vitro and in vivo. Results WO-1 loaded bioderived bone maintained natural network pore system and the surface of network pore system was coated with collagen membrane. The release of WO-1 from WO-1 loaded bioderived bone showed bursting release on the 1st day, then showed stable release. WO-1 loaded bioderived bone showed lasting and stable bacteriostasis to common pathogens of orthopaedic infections. The high concentration of WO-1 was observed in bone tissue and in muscle tissue at differenttime points and the difference among groups had no significance(P>0.05), while the concentration of WO-1 in blood was very low(P<0.05). Conclusion WO-1 loaded bioderived bone has good capability of drug controlled-release and bacteriostasis.