Neurofeedback, as an alternative treatment method of behavioral medicine, is a technique which translates the electroencephalogram (EEG) signals to styles as sounds or animation to help people understand their own physical status and learn to enhance or suppress certain EEG signals to regulate their own brain functions after several repeated trainings. This paper develops a neurofeedback system on the foundation of brain-computer interface technique. The EEG features are extracted through real-time signal process and then translated to feedback information. Two feedback screens are designed for relaxation training and attention training individually. The veracity and feasibility of the neurofeedback system are validated through system simulation and preliminary experiment.
Studies have shown that the clinical manifestation of patients with neuropsychiatric disorders might be related to the abnormal connectivity of brain functions. Psychogenic non-epileptic seizures (PNES) are different from the conventional epileptic seizures due to the lack of the expected electroencephalographically epileptic changes in central nervous system, but are related to the presence of significant psychological factors. Diagnosis of PNES remains challenging. We found in the present work that the connectivity between the frontal and parieto-occipital in PNES was weaker than that of the controls by using network analysis based on electroencephalogram (EEG) signals. In addition, PNES were recognized by using the network properties as linear discriminant nalysis (LDA) input and classification accuracy was 85%. This study may provide a feasible tool for clinical diagnosis of PNES.