west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "YE Changrong" 2 results
  • A summary of research progress on intelligent information processing methods for pregnant women's remote monitoring

    The monitoring of pregnant women is very important. It plays an important role in reducing fetal mortality, ensuring the safety of perinatal mother and fetus, preventing premature delivery and pregnancy accidents. At present, regular examination is the mainstream method for pregnant women's monitoring, but the means of examination out of hospital is scarce, and the equipment of hospital monitoring is expensive and the operation is complex. Using intelligent information technology (such as machine learning algorithm) can analyze the physiological signals of pregnant women, so as to realize the early detection and accident warning for mother and fetus, and achieve the purpose of high-quality monitoring out of hospital. However, at present, there are not enough public research reports related to the intelligent processing methods of out-of-hospital monitoring for pregnant women, so this paper takes the out-of-hospital monitoring for pregnant women as the research background, summarizes the public research reports of intelligent processing methods, analyzes the advantages and disadvantages of the existing research methods, points out the possible problems, and expounds the future development trend, which could provide reference for future related researches.

    Release date:2020-12-14 05:08 Export PDF Favorites Scan
  • Medical text classification model integrating medical entity label semantics

    Automatic classification of medical questions is of great significance in improving the quality and efficiency of online medical services, and belongs to the task of intent recognition. Joint entity recognition and intent recognition perform better than single task models. Currently, most publicly available medical text intent recognition datasets lack entity annotation, and manual annotation of these entities requires a lot of time and manpower. To solve this problem, this paper proposes a medical text classification model, bidirectional encoder representation based on transformer-recurrent convolutional neural network-entity-label-semantics (BRELS), which integrates medical entity label semantics. This model firstly utilizes an adaptive fusion mechanism to absorb prior knowledge of medical entity labels, achieving local feature enhancement. Then in global feature extraction, a lightweight recurrent convolutional neural network (LRCNN) is used to suppress parameter growth while preserving the original semantics of the text. The ablation and comparison experiments are conducted on three public medical text intent recognition datasets to validate the performance of the model. The results show that F1 score reaches 87.34%, 81.71%, and 77.74% on each dataset, respectively. The results show that the BRELS model can effectively identify and understand medical terminology, thereby effectively identifying users’ intentions, which can improve the quality and efficiency of online medical services.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content