west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "YOU Hong bo" 2 results
  • THE EFFECT OF CEFAZOLIN LOADED BONE MATRIX GELATIN ON REPAIRING LARGE SEGMENTAL BONE DEFECTS AND PREVENTING INFECTION AFTER OPERATION

    OBJECTIVE: To explore the possibility of repair long segmental bone defects and preventing infection with cefazolin loaded bone matrix gelatin (C-BMG). METHODS: C-BMG was made from putting cefazolin into BMG by vacuum adsorption and freeze-drying techniques. The sustaining period of effective drug concentration in vitro and in vivo was detected by inhabition bacteria, and the drug concentration in local tissues (bone and muscle) and plasma after implantation of C-BMG was examined by high performance liquid chromatography(HPLC). RESULTS: The effective inhibition time to staphylococcus aureus of C-BMG was 22 days in vitro, while 14 days in vivo. The drug concentration in local tissues(bone and muscle) were higher than that of plasma, and the drug concentration in local tissues was higher in early stage, later it kept stable low drug release. It suggested that C-BMG had excellent ability to repair segmental long bone defects. CONCLUSION: C-BMG can gradually release cefazolin with effective drug concentration and has excellent ability to repair segmental long bone defects. It may be a novel method to repair segmental long bone defects and prevent infection after the operation.

    Release date:2016-09-01 10:26 Export PDF Favorites Scan
  • STUDY ON ADRIAMYCIN-POROUS TRICALCIUM PHOSPHATE CERAMIC DRUG DELIVERY SYSTEM AND ITS DRUG RELEASE TEST IN VIVO

    OBJECTIVE To manufacture adriamycin-porous tricalcium phosphate (A-PTCP) ceramic drug delivery system (DDS) as a possible method for bone defect treatment after bone tumor operation. METHODS A-PTCP DDS was made from putting adriamycin into PTCP. Thirty rabbits were divided randomly into group A(24 rabbits) and group B(6 rabbits). A-PTCP was implanted in the greater trochanter of the right femur in group A. Adriamycin were injected into veins in group B. Muscle around A-PTCP and plasma were taken out at different period. Adriamycin concentrations in muscle and plasma were measured by high performance liquid chromatography (HPLC). RESULTS A-PTCP could gradually release adriamycin over 10 weeks. Adriamycin concentrations in the muscle were higher than that in plasma. CONCLUSION A-PTCP may be a new method for repairing bone defects after bone tumor operation.

    Release date:2016-09-01 10:20 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content