west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "YU Hongli" 7 results
  • A study on the effects of transcranial direct current stimulation combined with motor imagery on brain function based on electroencephalogram and near infrared spectrum

    Motor imagery is often used in the fields of sports training and neurorehabilitation for its advantages of being highly targeted, easy to learn, and requiring no special equipment, and has become a major research paradigm in cognitive neuroscience. Transcranial direct current stimulation (tDCS), an emerging neuromodulation technique, modulates cortical excitability, which in turn affects functions such as locomotion. However, it is unclear whether tDCS has a positive effect on motor imagery task states. In this paper, 16 young healthy subjects were included, and the electroencephalogram (EEG) signals and near-infrared spectrum (NIRS) signals of the subjects were collected when they were performing motor imagery tasks before and after receiving tDCS, and the changes in multiscale sample entropy (MSE) and haemoglobin concentration were calculated and analyzed during the different tasks. The results found that MSE of task-related brain regions increased, oxygenated haemoglobin concentration increased, and total haemoglobin concentration rose after tDCS stimulation, indicating that tDCS increased the activation of task-related brain regions and had a positive effect on motor imagery. This study may provide some reference value for the clinical study of tDCS combined with motor imagery.

    Release date: Export PDF Favorites Scan
  • Analysis of nerve excitability in the dentate gyrus of the hippocampus in cerebral ischaemia-reperfusion mice

    Ischemic stroke often leads to cognitive dysfunction, which delays the recovery process of patients. However, its pathogenesis is not yet clear. In this study, the cerebral ischemia-reperfusion model was built as the experimental object, and the hippocampal dentate gyrus (DG) was the target brain area. TTC staining was used to evaluate the degree of cerebral infarction, and nerve cell membrane potentials and local field potentials (LFPs) signals were collected to explore the mechanism of cognitive impairment in ischemia-reperfusion mice. The results showed that the infarcted area on the right side of the brain of the mice in the model group was white. The resting membrane potential, the number of action potential discharges, the post-hyperpolarization potential and the maximum ascending slope of the hippocampal DG nerve cells in the model mice were significantly lower than those in the control group (P < 0.01); the peak time, half-wave width, threshold and maximum descending slope of the action potential were significantly higher than those in the control group (P < 0.01). The time-frequency energy values of LFPs signals in the theta and γ bands of mice in the ischemia and reperfusion groups were significantly reduced (P < 0.01), and the time-frequency energy values in the reperfusion group were increased compared with the ischemia group (P < 0.01). The signal complexity of LFPs in the ischemia and reperfusion group was significantly reduced (P < 0.05), and the signal complexity in the reperfusion group was increased compared with the ischemia group (P < 0.05). In summary, cerebral ischemia-reperfusion reduced the excitability of nerve cells in the DG area of the mouse hippocampus; cerebral ischemia reduced the discharge activity and signal complexity of nerve cells, and the electrophysiological indicators recovered after reperfusion, but it failed to reach the healthy state during the experiment period.

    Release date: Export PDF Favorites Scan
  • A TrAdaBoost-based method for detecting multiple subjects’ P300 potentials

    Individual differences of P300 potentials lead to that a large amount of training data must be collected to construct pattern recognition models in P300-based brain-computer interface system, which may cause subjects’ fatigue and degrade the system performance. TrAdaBoost is a method that transfers the knowledge from source area to target area, which improves learning effect in the target area. Our research purposed a TrAdaBoost-based linear discriminant analysis and a TrAdaBoost-based support vector machine to recognize the P300 potentials across multiple subjects. This method first trains two kinds of classifiers separately by using the data deriving from a small amount of data from same subject and a large amount of data from different subjects. Then it combines all the classifiers with different weights. Compared with traditional training methods that use only a small amount of data from same subject or mixed different subjects’ data to directly train, our algorithm improved the accuracies by 19.56% and 22.25% respectively, and improved the information transfer rate of 14.69 bits/min and 15.76 bits/min respectively. The results indicate that the TrAdaBoost-based method has the potential to enhance the generalization ability of brain-computer interface on the individual differences.

    Release date:2019-08-12 02:37 Export PDF Favorites Scan
  • Effects of parameters selection with transcranial direct current stimulation based on real head model

    Transcranial direct current stimulation (tDCS) is a brain stimulation intervention technique, which has the problem of different criteria for the selection of stimulation parameters. In this study, a four-layer real head model was constructed. Based on this model, the changes of the electric field distribution in the brain with the current intensity, electrode shape, electrode area and electrode spacing were analyzed by using finite element simulation technology, and then the optimal scheme of electrical stimulation parameters was discussed. The results showed that the effective stimulation region decreased and the focusing ability increased with the increase of current intensity. The normal current density of the quadrilateral electrode was obviously larger than that of the circular electrode, which indicated that the quadrilateral electrode was more conducive to current stimulation of neurons. Moreover, the effective stimulation region of the quadrilateral electrode was more concentrated and the focusing ability was stronger. The focusing ability decreased with the increase of electrode area. Specifically, the focusing tended to increase first and then decrease with the increase of electrode spacing and the optimal electrode spacing was 64.0–67.2 mm. These results could provide some basis for the selection of electrical stimulation parameters.

    Release date: Export PDF Favorites Scan
  • Research on the effect of multi-modal transcranial direct current stimulation on stroke based on electroencephalogram

    As an emerging non-invasive brain stimulation technique, transcranial direct current stimulation (tDCS) has received increasing attention in the field of stroke disease rehabilitation. However, its efficacy needs to be further studied. The tDCS has three stimulation modes: bipolar-stimulation mode, anode-stimulation mode and cathode-stimulation mode. Nineteen stroke patients were included in this research (10 with left-hemisphere lesion and 9 with right). Resting electroencephalogram (EEG) signals were collected from subjects before and after bipolar-stimulation, anodal-stimulation, cathodal-stimulation, and pseudo-stimulation, with pseudo-stimulation serving as the control group. The changes of multi-scale intrinsic fuzzy entropy (MIFE) of EEG signals before and after stimulation were compared. The results revealed that MIFE was significantly greater in the frontal and central regions after bipolar-stimulation (P < 0.05), in the left central region after anodal-stimulation (P < 0.05), and in the frontal and right central regions after cathodal-stimulation (P < 0.05) in patients with left-hemisphere lesions. MIFE was significantly greater in the frontal, central and parieto-occipital joint regions after bipolar-stimulation (P < 0.05), in the left frontal and right central regions after anodal- stimulation (P < 0.05), and in the central and right occipital regions after cathodal-stimulation (P < 0.05) in patients with right-hemisphere lesions. However, the difference before and after pseudo-stimulation was not statistically significant (P > 0.05). The results of this paper showed that the bipolar stimulation pattern affected the largest range of brain areas, and it might provide a reference for the clinical study of rehabilitation after stroke.

    Release date: Export PDF Favorites Scan
  • Research on characteristics of brain functional network in stroke patients during convalescent period under transcranial direct current stimulation

    Transcranial direct current stimulation (tDCS) is an emerging non-invasive brain stimulation technique. However, the rehabilitation effect of tDCS on stroke disease is unclear. In this paper, based on electroencephalogram (EEG) and complex network analysis methods, the effect of tDCS on brain function network of stroke patients during rehabilitation was investigated. The resting state EEG signals of 31 stroke rehabilitation patients were collected and divided into stimulation group (16 cases) and control group (15 cases). The Pearson correlation coefficients were calculated between the channels, brain functional network of two groups were constructed before and after stimulation, and five characteristic parameters were analyzed and compared such as node degree, clustering coefficient, characteristic path length, global efficiency, and small world attribute. The results showed that node degree, clustering coefficient, global efficiency, and small world attributes of brain functional network in the tDCS group were significantly increased, characteristic path length was significantly reduced, and the difference was statistically significant (P < 0.05). It indicates that tDCS can improve the brain function network of stroke patients in rehabilitation period, and may provide theory and experimental basis for the application of tDCS in stroke rehabilitation treatment.

    Release date:2021-06-18 04:52 Export PDF Favorites Scan
  • Research on electroencephalogram power spectral density of stroke patients under transcranial direct current stimulation

    Transcranial direct current stimulation (tDCS) has become a new method of post-stroke rehabilitation treatment and is gradually accepted by people. However, the neurophysiological mechanism of tDCS in the treatment of stroke still needs further study. In this study, we recruited 30 stroke patients with damage to the left side of the brain and randomly divided them into a real tDCS group (15 cases) and a sham tDCS group (15 cases). The resting EEG signals of the two groups of subjects before and after stimulation were collected, then the difference of power spectral density was analyzed and compared in the band of delta, theta, alpha and beta, and the delta/alpha power ratio (DAR) was calculated. The results showed that after real tDCS, delta band energy decreased significantly in the left temporal lobes, and the difference was statistically significant (P < 0.05); alpha band energy enhanced significantly in the occipital lobes, and the difference was statistically significant (P < 0.05); the difference of theta and beta band energy was not statistically significant in the whole brain region (P > 0.05). Furthermore, the difference of delta, theta, alpha and beta band energy was not statistically significant after sham tDCS (P > 0.05). On the other hand, the DAR value of stroke patients decreased significantly after real tDCS, and the difference was statistically significant (P < 0.05), and there was no significant difference in sham tDCS (P > 0.05). This study reveals to a certain extent the neurophysiological mechanism of tDCS in the treatment of stroke.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content