This study aims to predict expression of estrogen receptor (ER) in breast cancer by radiomics. Firstly, breast cancer images are segmented automatically by phase-based active contour (PBAC) method. Secondly, high-throughput features of ultrasound images are extracted and quantized. A total of 404 high-throughput features are divided into three categories, such as morphology, texture and wavelet. Then, the features are selected by R language and genetic algorithm combining minimum-redundancy-maximum-relevance (mRMR) criterion. Finally, support vector machine (SVM) and AdaBoost are used as classifiers, achieving the goal of predicting ER by breast ultrasound image. One hundred and four cases of breast cancer patients were conducted in the experiment and optimal indicator was obtained using AdaBoost. The prediction accuracy of molecular marker ER could achieve 75.96% and the highest area under the receiver operating characteristic curve (AUC) was 79.39%. According to the results of experiment, the feasibility of predicting expression of ER in breast cancer using radiomics was verified.
It is of great clinical significance in the differential diagnosis of primary central nervous system lymphoma (PCNSL) and glioblastoma (GBM) because there are enormous differences between them in terms of therapeutic regimens. In this paper, we propose a system based on sparse representation for automatic classification of PCNSL and GBM. The proposed system distinguishes the two tumors by using of the different texture detail information of the two tumors on T1 contrast magnetic resonance imaging (MRI) images. First, inspired by the process of radiomics, we designed a dictionary learning and sparse representation-based method to extract texture information, and with this approach, the tumors with different volume and shape were transformed into 968 quantitative texture features. Next, aiming at the problem of the redundancy in the extracted features, feature selection based on iterative sparse representation was set up to select some key texture features with high stability and discrimination. Finally, the selected key features are used for differentiation based on sparse representation classification (SRC) method. By using ten-fold cross-validation method, the differentiation based on the proposed approach presents accuracy of 96.36%, sensitivity 96.30%, and specificity 96.43%. Experimental results show that our approach not only effectively distinguish the two tumors but also has strong robustness in practical application since it avoids the process of parameter extraction on advanced MRI images.