west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "YU Ruoyi" 1 results
  • Colon polyp detection based on multi-scale and multi-level feature fusion and lightweight convolutional neural network

    Early diagnosis and treatment of colorectal polyps are crucial for preventing colorectal cancer. This paper proposes a lightweight convolutional neural network for the automatic detection and auxiliary diagnosis of colorectal polyps. Initially, a 53-layer convolutional backbone network is used, incorporating a spatial pyramid pooling module to achieve feature extraction with different receptive field sizes. Subsequently, a feature pyramid network is employed to perform cross-scale fusion of feature maps from the backbone network. A spatial attention module is utilized to enhance the perception of polyp image boundaries and details. Further, a positional pattern attention module is used to automatically mine and integrate key features across different levels of feature maps, achieving rapid, efficient, and accurate automatic detection of colorectal polyps. The proposed model is evaluated on a clinical dataset, achieving an accuracy of 0.9982, recall of 0.9988, F1 score of 0.9984, and mean average precision (mAP) of 0.9953 at an intersection over union (IOU) threshold of 0.5, with a frame rate of 74 frames per second and a parameter count of 9.08 M. Compared to existing mainstream methods, the proposed method is lightweight, has low operating configuration requirements, high detection speed, and high accuracy, making it a feasible technical method and important tool for the early detection and diagnosis of colorectal cancer.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content