west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "Yu Dawei" 1 results
  • Quantitative proteomic analysis of the retina in the rat model of non-arteritic anterior ischemic optic neuropathy

    ObjectiveTo analyze the protein expression changes in the retina of non-arteritic anterior ischemic optic neuropathy (NAION) in rats.MethodsThe rat NAION (rNAION) model was established by Rose Bengal and laser. Twenty Sprague-Dawley rats were randomly divided into 4 groups, the normal control group, the laser control group, the RB injection control group, and the rNAION model group, with 5 rats in each group. The right eye was used as the experimental eye. The retina was dissected at the third day after modeling. Enzyme digestion method was used for sample preparation and data collection was performed in a non-dependent collection mode. The data were quantitatively analyzed by SWATH quantitative mass spectrometry, searching for differential proteins and performing function and pathway analysis.ResultsCompared with the other three control groups, a total of 184 differential proteins were detected in the rNAION group (expression fold greater than 1.5 times and P<0.05), including 99 up-regulated proteins and 85 down-regulated proteins. The expressions of glial fibrillary acidic protein, guanine nucleotide binding protein 4, laminin 1, 14-3-3γ protein YWHAG were increased. Whereas the expressions of Leucine-rich glioma-inactivated protein 1, secretory carrier-associated membrane protein 5, and Clathrin coat assembly protein AP180 were decreased. The differential proteins are mainly involved in biological processes such as nerve growth, energy metabolism, vesicle-mediated transport, the regulation of synaptic plasticity, apoptosis and inflammation. Pathway enrichment analysis showed that PI3K-Akt signaling pathway and complement and thrombin reaction pathway was related to the disease.ConclusionThe protein expressions of energy metabolism, nerve growth, synaptic vesicle transport and PI3K-Akt signaling pathway can regulate the neuronal regeneration and apoptosis in NAION.

    Release date:2021-04-19 03:36 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content