Lung cancer has brought tough challenges to human health due to its high incidence and mortality rate in the current practice. Nowadays, computed tomography (CT) imaging is still the most preferred diagnostic tool for early screening of lung cancer. However, a great challenge brought from accumulative CT imaging data can not meet the demand of the current clinical practice. As a novel kind of artificial intelligence technique aimed to deal with medical images, a computer-aided diagnosis has been found to provide useful auxiliary information, attenuate the workload of doctors, and significantly improve the efficiency and accuracy for clinical diagnosis of lung cancer. Therefore, an effective combination of computer-aided techniques and CT imaging has increasingly become an active area of investigation in early diagnosis of lung cancer. This review aims to summarize the latest progress on the diagnostic value of computer-aided technology with regard to early stage lung cancer from the perspectives of machine learning and deep learning.