west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "ZHANG Shunqi" 2 results
  • Research on coded excitation processing method for magneto-acoustic signal

    Detecting and imaging method of biological electrical characteristics based on magneto-acoustic coupling effect gives valuable information of tissue in early tumor diagnosis and bioelectrical current monitoring. Normal exciting and receiving method is to use single pulse. In this method the signal to noise ratio (SNR) is limited, so the imaging quality and imaging speed are low. In this study, we propose a processing method based on coded excitation to improve SNR and shorten the processing time. The processing method using 13 bit Barker coded excitation and 16 bit Golay code excitation are studied by simulation and experiments. The results show that SNR of magneto-acoustic signal is improved by 20.96 dB and 20.62 dB by using 13 bit Barker coded and 16 bit Golay coded excitation, respectively. It also indicates the processing time is short compare to single pulse mode. In the case of the SNR increasing, the overall acquiring and processing time under 13 bit Barker coded excitation and the 16 bit Golay coded excitation is shortened to 3.62% and 4.73%, respectively, compared to the single pulse excitation with waveform averaging method. In conclusion, the coded excitation will be significant for the improvement of magneto-acoustic signal SNR and imaging quality.

    Release date:2017-10-23 02:15 Export PDF Favorites Scan
  • Research on magneto-acoustic-electrical tomography method based on liquid metal contrast agent and M sequence coded excitation

    Magneto-acoustic-electric tomography (MAET) boasts high resolution in ultrasound imaging and high contrast in electrical impedance imaging, making it of significant research value in the fields of early tumor diagnosis and bioelectrical monitoring. In this study, a method was proposed that combined high conductivity liquid metal and maximum length sequence (M sequence) coded excitation to improve the signal-to-noise ratio. It was shown that, under rotational scanning, the liquid metal significantly improved the signal-to-noise ratio of the inter-tissue magneto-acoustic-electric signal and enhanced the quality of the reconstructed image. The signal-to-noise ratio of the signal was increased by 5.6, 11.1, 21.7, and 45.7 times under the excitation of 7-, 15-, 31-, and 63-bit M sequence code, respectively. The total usage time of 31-bit M sequence coded excitation imaging was shortened by 75.6% compared with single-pulse excitation when the same signal-to-noise ratio was improved. In conclusion, the imaging method combining liquid metal and M-sequence coding excitation has positive significance for improving MAET image quality.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content