Objective To review and summarize the latest development of the therapy for the Duchenne muscular dystrophy (DMD). Methods Therecentlypublished articles related to the therapies for DMD were extensively reviewed and briefly summarized. Results The therapeutic approaches for DMD included the gene therapy, the cell therapy, and the pharmacological therapy. The gene therapy and the cell therapy were focused on the treatment for the cause of DMD by the delivery of the missing gene, the modification of the mutated gene, and the transfer of the normal cells including the stem cells, while the pharmacological therapy dealt with the downstream events caused by the dystrophin gene defect, slowed down the pathologic progress of DMD, and improved the DMD patient’s life quality and life span, by medication and other factor treatments. Conclusion There is still no cure for DMD because of various difficulties in replacing or repairing thedefected gene and of the multifaceted nature of the severe symptoms. Therefore,it is imperative for us to find out a more effective treatment that can solve these problems.
Objective To investigate the effect of keratin 17 (K-17) on the migration, prol iferation and tube formation of human umbil ical vein endothel ial cell (HUVEC), and to real ize the role of K-17 in angiogenesis. Methods After HUVEC were cultured in DMEM medium supplemented with 10%FBS overnight, K-17-siRNA-mixture (experimental group) and Ncontrol-siRNA-mixture (negative control group) were added into HUVEC, respectively, by Lipofectamine 2000 transfection assay, and the final concentration of the siRNA was 50 nmol/L. Lipofectamine 2000 alone was used as the control. After the cells were cultured for 36 hours, the cell prol iferation abil ity was detected by cell counting. After 30-hour culture, the cell’s abil ities of migration and differentiation to tube were detected by 24-well Mill icell units and the collagen gel assay, respectively. In addition, non-siRNA-treated HUVEC were cultured for 24 hours in DMEM medium supplemented with 10%FBS (group A), 2%FBS (group B) and 2%FBS+10 ng/mL bFGF (group C), respectively, and then the expression of K-17 in HUVEC was detected by RT-PCR and Western blot. Results After the treatment with K-17-siRNA for 36 hours, HUVEC exhibited no significant difference in the prol iferation, compared with both control and negative control groups (P gt; 0.05). After transfected with K-17-siRNA for 30 hours, the number of HUVEC in the experimental group which migrated from the upper chamber to the lower chamber of Mill icell wells within 24 hours (3719.0 ± 319.0) was smaller than both control (7 437.5 ± 212.0) and negative control (7 356.3 ± 795.7) groups, with significant difference (P lt; 0.01). However, there was no significant difference between the control group and the negative control group (P gt; 0.05). After HUVEC were transfected with K-17- siRNA for 30 hours, the number of tubes in the experimental group, the negative control group and the control group in 24 hours was (1.1 ± 0.5), (3.6 ± 0.5) and (3.2 ± 0.6) per field, respectively. The experimental group was significantly different from both control and negative control groups (P lt; 0.01), and there was no significant difference between the negative control group and the control group (P gt; 0.05). The expression of K-17 protein in HUVEC in groups A, B and C was 0.25 ± 0.02, 0.08 ± 0.01 and 0.72 ± 0.03, respectively. There was significant difference among these three groups (P lt; 0.01). Conclusion K-17 has no impact on cell prol iferation, but may augment endothel ial cell migration, which may facil itate angiogenesis.
Objective To investigate the effect of TIMP-2 gene that was transfected by adenovirus on extracellular matrix of abdominal aortic through assessing the changes of morphology and histopathology of the rat models with abdominal aortic aneurysm. Methods The rat models with abdominal aortic aneurysm were constructed by intraluminally perfusing porcine pancreatic elastase. Twenty-four SD rats with aneurysm were then randomly divided into 3 groups: AdTIMP-2 group (perfused locally with solution of TIMP-2 gene transfected by adenovirus vector to abdominal aorta), AdCMV group (transfected by non-viral vector), and PBS group. After 14 days, the concentrations of elastin and collagen that were collected from the samples of aortic wall were measured by image analysis system and the fixed aortic tissues were examined by light microscopy and some other specific staining methods. Results None of abdominal aortic aneurysm developed in TIMP-2 gene transfected group, with significantly higher rates of developed aneurysm in the other groups (P<0.01). The diameters of arteries on day 14 in the AdTIMP-2 group were (2.33±0.06) mm, which were significantly smaller than those in the AdCMV group 〔(3.52±0.11) mm〕 and PBS group 〔(3.43±0.09) mm〕. The elastic fibers and collagenous fibers were preserved with more integrity in AdTIMP-2 group and inflammation cells that were observed in adventitia of artery were also less than those of the other groups. Conclusion TIMP-2 gene transfected by adenovirus vector could restore the degradation of extracellular matrix that was aroused by elastase and could block the formation of abdominal aortic aneurysm, which may provide a new strategy for the treatment of abdominal aortic aneurysm.
【Abstract】 Objective To investigate the role of myosin l ight chain (Myl) in myogenesis in vitro. Methods The extraocular muscle, diaphragm and gastrocnemius muscle myoblasts (eMb, dMb and gMb) were isolated and purified from 12 3-week-old C57BL/6 mice by using the enzyme digestion and Preplate technique, and then were subcultivated. The Myl expression in Mb was detected by RT-PCR and Western blot analysis; the Mb prol iferation activity was tested by methylene blue assay, and the myotube formation was observed. After anti-Myl antibody (1, 2, 3, 8, 16 ng/mL) was induced in the Mb culture (experimental group), the abil ity of prol iferation of myoblasts and the myotube formation were identified. Meanwhile, the Mb which was cultured without anti-Myl antibody was indentified as the control group. Results The results of RT-PCR and Western blot analysis showed that Myl1 and Myl4 mRNA and Myl protein were expressed in eMb, dMb and gMb at 24 hours after seeding, and their expression level were lower in eMb than in dMb and gMb (P lt; 0.01), and the latter two did not show any significant difference (P gt; 0.05). Myl2 and Myl3 mRNA was not detected in these three myoblasts. The prol iferation assay showed that the eMb prol iferated faster as compared with dMb and gMb (P lt; 0.01). eMb began to yield myotubes at 40 hours after seeding and dMb and gMb at 16 hours after seeding. At 6 days, the number of myotubes derived from eMb was (137.2 ± 24.5)/ field, which was significantly larger than that of myotubes from dMb [(47.6 ± 15.5) / field ] and gMb [(39.8 ± 5.1) field ] (P lt; 0.01). There was not statistically significant difference between the latter two groups (P gt; 0.05). After the antibody treatment, the absorbency values of the eMb, dMb and gMb in the experimental groups at each antibody concentration point were significantly higher than those in the corresponding control groups (P lt; 0.05), and the dose-dependent way was performed.The numbers of myotubes from dMb at 16 hours were (48.2 ± 7.1)/ well in the experimental group and (23.4 ± 4.9)/ well in the control group, and at 6 days were (40.6 ± 10.2)/ field in the experimental group and (63.1 ± 6.1)/ field in the control group.There was statistically significant difference between the experimental and control groups (P lt; 0.01). Conclusion Myl may play a role in myogenesis through the negative effect on the myoblast prol iferation.