west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "ZHANG Xingdong." 2 results
  • EXPERIMENTAL STUDY ON COLLAGEN HYDROGEL SCAFFOLDS FOR CARTILAGE TISSUE ENGINEERING

    Objective To investigate the effect of collagen type I concentration on the physical and chemical properties of the collagen hydrogel, and to analyze the effect of different concentrations of collagen type I hydrogel on the phenotype and gene expression of the chondrocytes in vitro. Methods Three kinds of collagen hydrogels with concentrations of 12, 8, and 6 mg/ mL (C12, C8, and C6) were prepared, respectively. The micro-structure, compressive modulus, and swelling ratio of the hydrogels were measured and analyzed. The chondrocytes at 2nd passage were cocultured with three kinds of collagen hydrogels in vitro, respectively. After 1-day culture, the samples were stained with fluorescein diacetate (FDA) / propidium iodide (PI) and the cell activity was observed under confocal laser microscope. After 14-day culture, HE staining and toluidine blue staining were carried out to observe the histological morphology, and mRNA expressions of chondrocytes related genes (collagen type II, Aggrecan, collagen type I, collagen type X, Sox9) were determined by real-time fluorescent quantitative PCR. Results With the increase of collagen type I concentration from 6 to 12 mg/mL, the physical and chemical properties of the collagen hydrogels changed significantly: the fiber network became dense; the swelling ratios of C6, C8, and C12 were 0.260 ± 0.055, 0.358 ± 0.072, and 0.539 ± 0.033 at 192 hours, respectively, showing significant differences among 3 groups (P lt; 0.05); and the compression modulus were (4.86 ± 0.96), (7.09 ± 2.33), and (11.08 ± 3.18) kPa, respectively, showing significant differences among 3 groups (P lt; 0.05). After stained with FDA/PI, most cells were stained green, and few were stained red. The histological observation results showed that the chondrocytes in C12 hydrogels aggregated obviously with b heterochromia, chondrocytes in C8 hydrogels aggregated partly with obvious heterochromia, and chondrcytes in C6 hydrogels uniformly distributed with weak heterochromia. Real-time fluorescent quantitative PCR results showed that the mRNA expressions of collagen type II and Aggrecan were at the same level in C12, C8, and C6; the expressions of collagen type I, Sox9, and collagen type X were up-regulated with the increase of collagen type I hydrogels concentration, and the expressions were the highest at 12 mg/mL and were the lowest at 6 mg/mL, showing significant differences among 3 groups (P lt; 0.05). Conclusion Increasing the concentration of collagen hydrogels leads to better mechanical properties and higher shrink-resistance, but it may induce the up-regulation of cartilage fibrosis and hypertrophy related gene expression.

    Release date:2016-08-31 04:22 Export PDF Favorites Scan
  • COMPARATIVE STUDY ON COMBINED CULTURE OF HUMAN PLACENTA-DERIVED MESENCHYMAL STEM CELLS AND HUMAN UMBILICAL VEIN ENDOTHELIAL CELLS FROM SAME AND DIFFERENT INDIVIDUALS

    Objective To investigate the protocols of combined culture of human placenta-derived mesenchymal stem cells (HPMSCs) and human umbilical vein endothelial cells (HUVECs) from the same and different individuals on collagen material, to provide the. Methods Under voluntary contributions, HPMSCs were isolated and purified from human full-term placenta using collagenase IV digestion and lymphocyte separation medium, and confirmed by morphology methods and flow cytometry, and then passage 2 cells were cultured under condition of osteogenic induction. HUVECs were isolated from fresh human umbilical vein by collagenase I digestion and subcultured to purification, and cells were confirmed by immunocytochemical staining of von Willebrand factor (vWF). There were 2 groups for experiment. Passage 3 osteoblastic induced HPMSCs were co-cultured with HUVECs (1 ∶ 1) from different individuals in group A and with HUVECs from the same individual in group B on collagen hydrogel. Confocal laser scanning microscope was used to observe the cellular behavior of the cell-collagen composites at 1, 3, 5, and 7 days after culturing. Results Flow cytometry showed that HPMSCs were bly positive for CD90 and CD29, but negative for CD31, CD45, and CD34. After induction, alizarin red, alkaline phosphatase, and collagenase I staining were positive. HUVECs displayed cobble-stone morphology and stained positively for endothelial cell marker vWF. The immunofluorescent staining of CD31 showed that HUVECs in the cell-collagen composite of group B had richer layers, adhered and extended faster and better in three-dimension space than that of group A. At 7 days, the class-like microvessel lengths and the network point numbers were (6.68 ± 0.35) mm/mm2 and (17.10 ± 1.10)/mm2 in group A, and were (8.11 ± 0.62) mm/mm2 and (21.30 ± 1.41)/mm2 in group B, showing significant differences between the 2 groups (t=0.894, P=0.000; t=0.732, P=0.000). Conclusion Composite implant HPMSCs and HUVECs from the same individual on collagen hydrogel is better than HPMSCs and HUVECs from different individuals in integrity and continuity of the network and angiogenesis.

    Release date:2016-08-31 04:08 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content