west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "ZHOU Dongming" 3 results
  • The simulative study of a new probe for the in vivo dielectric measurement of anisotropic tissue in radio frequency band

    In this paper, a new probe is proposed for the in vivo dielectric measurement of anisotropic tissue in radio frequency band, which could accomplish the dielectric measurement in perpendicular directions by one operation. The simulative studies are performed in the frequency range from 1–1 000 MHz in order to investigate the influence of probe dimension on the energy coupling and sensitivity of measurement. The suitable probe is designed and validated for the actual measurement in this frequency band. According to the simulation results, the energy coupling of the probe could be kept below –12 dB in the frequency range from 200–400 MHz with high sensitivity of measurement for the dielectric properties of anisotropic tissue. That indicates the new type of probe has the potential to achieve the dielectric measurement of anisotropic tissue in radio frequency band and could avoid the measurement error by multi-operations in the conventional method. This new type of probe could provide a new method for the in vivo dielectric measurement of anisotropic tissue in radio frequency band.

    Release date:2018-02-26 09:34 Export PDF Favorites Scan
  • Image segmentation of skin lesions based on dense atrous spatial pyramid pooling and attention mechanism

    The skin is the largest organ of the human body, and many visceral diseases will be directly reflected on the skin, so it is of great clinical significance to accurately segment the skin lesion images. To address the characteristics of complex color, blurred boundaries, and uneven scale information, a skin lesion image segmentation method based on dense atrous spatial pyramid pooling (DenseASPP) and attention mechanism is proposed. The method is based on the U-shaped network (U-Net). Firstly, a new encoder is redesigned to replace the ordinary convolutional stacking with a large number of residual connections, which can effectively retain key features even after expanding the network depth. Secondly, channel attention is fused with spatial attention, and residual connections are added so that the network can adaptively learn channel and spatial features of images. Finally, the DenseASPP module is introduced and redesigned to expand the perceptual field size and obtain multi-scale feature information. The algorithm proposed in this paper has obtained satisfactory results in the official public dataset of the International Skin Imaging Collaboration (ISIC 2016). The mean Intersection over Union (mIOU), sensitivity (SE), precision (PC), accuracy (ACC), and Dice coefficient (Dice) are 0.901 8, 0.945 9, 0.948 7, 0.968 1, 0.947 3, respectively. The experimental results demonstrate that the method in this paper can improve the segmentation effect of skin lesion images, and is expected to provide an auxiliary diagnosis for professional dermatologists.

    Release date: Export PDF Favorites Scan
  • Multi-scale medical image segmentation based on pixel encoding and spatial attention mechanism

    In response to the issues of single-scale information loss and large model parameter size during the sampling process in U-Net and its variants for medical image segmentation, this paper proposes a multi-scale medical image segmentation method based on pixel encoding and spatial attention. Firstly, by redesigning the input strategy of the Transformer structure, a pixel encoding module is introduced to enable the model to extract global semantic information from multi-scale image features, obtaining richer feature information. Additionally, deformable convolutions are incorporated into the Transformer module to accelerate convergence speed and improve module performance. Secondly, a spatial attention module with residual connections is introduced to allow the model to focus on the foreground information of the fused feature maps. Finally, through ablation experiments, the network is lightweighted to enhance segmentation accuracy and accelerate model convergence. The proposed algorithm achieves satisfactory results on the Synapse dataset, an official public dataset for multi-organ segmentation provided by the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), with Dice similarity coefficient (DSC) and 95% Hausdorff distance (HD95) scores of 77.65 and 18.34, respectively. The experimental results demonstrate that the proposed algorithm can enhance multi-organ segmentation performance, potentially filling the gap in multi-scale medical image segmentation algorithms, and providing assistance for professional physicians in diagnosis.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content