west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "ZHOU Guangdong" 2 results
  • EXPERIMENTAL STUDY ON TISSUE ENGINEERED TESTICULAR PROSTHESIS WITH INTERNAL SUPPORT

    Objective To investigate the feasibility and characteristic of tissue engineered testicular prosthesis with highdensity polyethylene(HDPE,trade name: Medpor) and polyglycolic acid(PGA). Methods The chondrocytes were isolated from the swine articular.The PGA scaffold was incorporated with medpor which semidiameters were 6mmand 4mm respectively.Then, the chondrocytes (5×10 7/ml) were seeded onto Medpor-PGA scaffold and cultured for 2 weeks. The ten BALB/C mice were divided into two groups randomly(n=5). In the experimental group, the cell-scaffold construct was implanted into subcutaneous pockets on the back of nude mice. In the control group, the Medpor-PGA scaffold was implanted. The mice of two groups were sacrificed to harvest the newly formed cartilage prosthesis after 8 weeks. Macroscopy, histology and immunohistochemistry observations were made. Results The gross observation showed that on changes were in shape and at size, the color and elasticity were similar to that of normal cartilage and that the cartilage integrated with Medpor in the experimental group; no cartilage formed and fiberlike tissue was found in the control group. HE staining showed that many mature cartilage lacuna formed without blood vessel and some PGA did not degradated completely. Toluidine blue staining showed extracellular matrix had metachromia. Safranin O-fast green staining showed that many proteoglycan deposited and collagen type Ⅱ expression was bly positive. In the control group, Medpor was encapsulated by fiber tissue with rich blood vessel. Conclusion The newly formed complex of Medpor-PGA and cells was very similar to testicle in gross view and to normal cartilage in histology. This pilot technique of creating testicular prosthesis by incorporating tissue-engineered cartilage with Medpor demonstrated success.

    Release date:2016-09-01 09:20 Export PDF Favorites Scan
  • PRELIMINARY STUDY ON BIOLOGICAL PRINTING OF hBMSCs

    Objective To establ ish a two-dimensional biological printing technique of hBMSCs so as to control the cell transfer process and keep cell viabil ity after printing. Methods Bone marrow (5 mL) was obtained from healthy volunteer. The hBMSCs were regularly subcultured to harvest cells at passage 2, which were adjusted to the single cell suspensionat a density of 1 × 106/mL. The experiment was divided into 3 groups: printing group 1 in which cells underwent propidium iodide (PI) fluorescent label ing, then were transferred by rapid prototype biological printer (interval in x-axis 300 μm, interval in y-axis 1 500 μm), and laser scanning confocal microscope was appl ied to observe cell fluorescence; printing group 2 in which cells received no PI label ing and were cultured for 2 hours after transfer, Live/Dead viabil ity Kit was adopted to detect cell viabil ity and laser scanning confocal microscope was appl ied to observe cell fluorescence; half of the cells in printing group receiving no Live/Dead viabil ity Kit detection were cultured for 7 days, then inverted microscope was used to observe cell morphology, routine culture was conducted after the adherence of cells, the growth condition of cells was observed dynamically; control group in which steps were the same as the printing group 2 except that cell suspension received no printing. Results Laser scanning confocal microscope observation on the cells in printing group 1 revealed the “cell ink droplets” were distributed regularly and evenly in the two-dimensional layer and each contained 15-35 cells, meeting the requirement of designing two-dimensional cell printing. The cells in printing group 2 went through cell viabil ity test, laser scanning confocal microscope observation showed the fluorescence of cells 30 minutes after cell incubation. There was no significant difference between the control group and the printing groups in terms of cell viabil ity. The printed cells presented normal adherence, good morphology and good growth state 7 days after routine culture. Conclusion Biological printing technique can real ize the oriented, quantificational and regulardistribution of hBMSCs in the two-dimensional plane and lays the foundation for the construction of three-dimensional cellprinting or even organ printing system.

    Release date:2016-09-01 09:05 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content