west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "ZHOU Liyun" 2 results
  • Research progress on the design of bone scaffolds with different single cell structures

    Objective To review the research progress of design of bone scaffolds with different single cell structures. Methods The related literature on the study of bone scaffolds with different single cell structures at home and abroad in recent years was extensively reviewed, and the research progress was summarized. ResultsThe single cell structure of bone scaffold can be divided into regular cell structure, irregular cell structure, cell structure designed based on topology optimization theory, and cell structure designed based on triply periodic minimal surface. Different single cell structures have different structural morphology and geometric characteristics, and the selection of single cell structure directly determines the mechanical properties and biological properties of bone scaffold. It is very important to choose a reasonable cell structure for bone scaffold to replace the original bone tissue. Conclusion Bone scaffolds have been widely studied, but there are many kinds of bone scaffolds at present, and the optimization of single cell structure should be considered comprehensively, which is helpful to develop bone scaffolds with excellent performance and provide effective support for bone tissue.

    Release date: Export PDF Favorites Scan
  • Research progress in influence of microstructure on performance of triply-periodic minimal surface bone scaffolds

    Objective To summarize the influence of microstructure on performance of triply-periodic minimal surface (TPMS) bone scaffolds. Methods The relevant literature on the microstructure of TPMS bone scaffolds both domestically and internationally in recent years was widely reviewed, and the research progress in the imfluence of microstructure on the performance of bone scaffolds was summarized. Results The microstructure characteristics of TPMS bone scaffolds, such as pore shape, porosity, pore size, curvature, specific surface area, and tortuosity, exert a profound influence on bone scaffold performance. By finely adjusting the above parameters, it becomes feasible to substantially optimize the structural mechanical characteristics of the scaffold, thereby effectively preempting the occurrence of stress shielding phenomena. Concurrently, the manipulation of these parameters can also optimize the scaffold’s biological performance, facilitating cell adhesion, proliferation, and growth, while facilitating the ingrowth and permeation of bone tissue. Ultimately, the ideal bone fusion results will obtain. Conclusion The microstructure significantly and substantially influences the performance of TPMS bone scaffolds. By deeply exploring the characteristics of these microstructure effects on the performance of bone scaffolds, the design of bone scaffolds can be further optimized to better match specific implantation regions.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content