Objective The intercellular adhesion (ica) gene of Staphylococcus epidermidis (SE) is a key factor to bacterial aggregation, to analysis the genotype of iatrogenic SE and to explore the effect of iatrogenic SE ica operon on theformation of bacterial biofilm on the surface of polyvinyl chloride (PVC). Methods Fifty-six cl inical isolates of iatrogenic SEwere selected, and PCR and gene sequencing were used to detect the genes related with bacterial biofilm formation. The genes contained 16S rRNA, autolysin (atlE), fibrinogen binding protein (fbe), and icaADB. The bacteria suspension of 1 × 105 cfu/mL iatrogenic SE was prepared; according to the test results of target genes, the PVC material and the genotype of icaADB+, atlE+, fbe+ strains were co-cultivated as the ica positive group; the PVC material and the genotype of icaADB-, atlE+, fbe+ strains were co-cultivated as the ica negative group. The thickness of biofilm and bacterial community quantity unit area on PVC materials were measured by confocal laser scanning microscope, and the surface structure of biofilm formation was observed by scanning electron microscope (SEM) at 6, 12, 18, 24, and 30 hours. Results The positive rate of 16S rRNA of iatrogenic SE strains was 100% (56/56). The genotype of icaADB+, atlE+, and fbe+ strains accounted for 57.1% (32/56). The genotype of icaADB-, atlE+, and fbe+ strains accounted for 37.5% (21/56). The sequencing results showed that the product sequences of 16S rRNA, atlE, fbe, and icaADB were consistent with those in GenBank. With time, no significant bacterial biofilm formed on the surface of PVC in ica operon negative group. But in ica operon positive group, the number of bacterial community was gradually increased, and the volume of bacterial biofilms was gradually increased on the surface of PVC. At 24 hours, mature bacterial biofilm structure formed, and at 30 hours, the volume of bacterial biofilms was tending towards stabil ity. The thickness of biofilm (F=6 714.395, P=0.000) and the bacterial community quantity unit area on PVC materials (F=435.985, P=0.000) in ica operon positive groupwere significantly higher than those in ica operon negative group. Conclusion Iatrogenic SE can be divided into 2 types ofica operon negative and ica operon positive bacteria. The iatrogenic SE ica operon can strengthen bacterium biofilm formation capabil ity on PVC materials, bacterium community quantity, and thickness of biofilm, it plays an important role in bacterium biofilm formation on PVC materials.
Objective To study the influence of brominated furanones on the biofilm formation of Escherichia coli on the polyvinyl chloride (PVC) material, and to provide new ideas for the research of surface modification of materials and cl inicaltreatment of biomaterial centered infection. Methods Three brominated furanones with representative chemical structurewere chosen and coated on the surface modification of PVC materials, respectively [furanone 1: 3, 4-dibromo-5-hydroxy-furanone; furanone 2: 4-bromo-5-(4-methoxyphenyl)-3-(methylamino)-furanone; furanone 3: 3, 4-dibromo-5, 5-bis (4-methylphenyl)- 2 (5H)-furanone]. All the modificated PVC materials and Escherichia coli were co-cultivated. The PVC material soaked with 75% ethanol for 5 minutes and Escherichia coli were co-cultivated together as the control group. The thickness of bacterial community and bacterial community quantity in the unit area on PVC materials were measured by confocal laser scanning microscope (CLSM), and the surface structure of biofilm formation was observed by scanning electron microscope (SEM). Results The CLSM showed that the thickness of bacterial community and the bacterial community quantity in the unit area of PVC materials was significantly less (P lt; 0.05) in furanone 3 group than in control group, but no significant difference (P gt; 0.05) was found between furanone 1, furanone 2 groups and control group. SEM showed that the quantity of bacterial community in the unit area of PVC materials surface in furanone 3 group was fewer than that in control group at 6 hours; the biofilm structure on PVC materials surface formed at 18 hours in control group, furanone 1 group, and furanone 2 group, but there was no mature biofilm structure on PVC materials surface in furanone 3 group at 18 hours. Conclusion The impact of different brominated furanones on Escherichia coli biofilm formation on the surface of PVC materials is different, 3, 4-dibromo-5, 5-bis (4-methylphenyl)-2 (5H)- furanone can inhibit Escherichia coli biofilm formation on the surface of PVC material.
ObjectiveTo study the effect of intercellular adhesion (ica) operon of Staphylococcus epidermidis on the inflammation associated with mixed biofilm of Staphylococcus epidermidis and Candida albicans on endotracheal tube material in rabbits. MethodsThe standard strains of Staphylococcus epidermidis RP62A (ica operon positive, positive group) and ATCC12228 (ica operon negative, negative group) were taken to prepare a bacterial solution with a concentration of 1×106 CFU/mL, respectively. Then, the two bacterial solutions were mixed with the standard strain of Candida albicans ATCC10231 of the same concentration to prepare a mixed culture solution at a ratio of 1∶1, respectively. The mixed culture solution was incubated with endotracheal tube material for 24 hours. The formation of mixed biofilm on the surface of the material was observed by scanning electron microscope. Thirty New Zealand rabbits, aged 4-6 months, were divided into two groups (n=15), and the endotracheal tube materials of the positive group and the negative group that were incubated for 24 hours were implanted beside the trachea. The body mass of rabbits in the two groups was measured before operation and at 1, 3, and 7 days after operation. At 1, 3, and 7 days after operation, the levels of interleukin 1β (IL-1β), IL-6, tumor necrosis factor α (TNF-α), and monocytechemotactic protein 1 (MCP-1) were detected by using an ELISA test kit. At 7 days after operation, the formation of mixed biofilm on the surface of the endotracheal tube materials was observed by scanning electron microscope, the inflammation and infiltration of tissues around the materials were observed by HE staining, and the bacterial infections in heart, lung, liver, and kidney were observed by plate colony counting method.ResultsScanning electron microscope observation showed that the mixed biofilm structure was obvious in the positive group after 24 hours in vitro incubation, but no mixed biofilm formation was observed in the negative group. In vivo studies showed that there was no significant difference in body mass between the two groups before operation and at 1, 3, and 7 days after operation (P>0.05). Compared with the negative group, the levels of MCP-1 and IL-1β at 1 day, and the levels of IL-1β, MCP-1, IL-6, and TNF-α at 3 and 7 days in the positive group all increased, with significant differences (P<0.05). Scanning electron microscope observation showed that a large amount of Staphylococcus epidermis and mixed biofilm structure were observed in the positive group, and a very small amount of bacteria was observed in the negative group with no mixed biofilm structure. HE staining of surrounding tissue showed inflammatory cell infiltration in both groups, and neutrophils and lymphocytes were more in the positive group than in the negative group. There was no significant difference in the number of bacterial infections in heart and liver between the two groups (P>0.05). The number of bacterial infections in lung and kidney in the positive group was higher than that in negative group (P<0.05).ConclusionIn the mixed infection of Staphylococcus epidermidis and Candida albicans, the ica operon may strengthen the structure of the biofilm and the spread of the biofilm in vivo, leading to increased inflammatory factors, and the bacteria are difficult to remove and persist.