This article presents the design of a motion control system for seated lower-limb rehabilitation training. The system is composed of lower limb exoskeleton, motor drive circuit, program of motion control, and so forth. The power of lower limbs joints is provided by six motors. The PCI-1240 motion control card is used as the core. This study achieved repetitive rotation training and gait trajectory training of lower limbs joints, of which the velocity, angle and time can be accurately controlled and adjusted. The experimental results showed that the motion control system can meet the requirement of repetitive rehabilitation training for patients with lower limb dysfunction. This article provides a new method to the research of motion control system in rehabilitation training, which can promote industrial automation technique to be used for health care, and conducive to the further study of the rehabilitation robot.
This research is to develop a weight-loss walking rehabilitation training system based on differential air pressure. The system adopted Proportion-Integral-Derivative (PID) algorithm to improve the precision of weight loss, taking MSP430F149 microprocessor of Texas Instruments as the core of pressure control system. The training software is designed based on Microsoft Visual C++ 6.0 of Microsoft. The system can provide comfortable training environment for patients with lower limb motor function impediment, and can collect electromyographic signals from patients, so as to further the scientific and normative management of the patient's information. Based on this training system, the initial bearing weight, bearing weight after maximum weight loss, and maximum weight loss percentage of 10 normal adults’ lower limbs were collected. It was found that the intraclass correlation coefficient (ICC) values were all greater than 0.6. The training system has a good reliability, which can provide scientific data for clinical weight-loss lower limb rehabilitation training.