west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "ZOU Huazhang" 2 results
  • BIOMECHANICAL STUDY ON A NOVEL INJECTABLE CALCIUM PHOSPHATE CEMENT CONTAINING POLY (LATIC-CO-GLYCOLIC ACID) IN REPAIRING TIBIAL PLATEAU FRACTURES

    Objective To investigate the biomechanics of a novel injectable calcium phosphate cement (CPC) composited by poly (lactic-co-glycolic acid) (PLGA) combined with double-screw fixation in repairing Schatzker II type tibial plateau fracture, so as to provide the mechanical basis for the clinical minimally invasive treatment. Methods Ten matched pairs of proximal tibia specimens were harvested from 10 elderly cadavers to prepare Schatzker II type tibial plateau fracture model. Fracture was fixed by forcing injection of CPC (experimental group) or autologous cancellous bone (control group) combined with double-screw fixation. The samples underwent axial compression on MTS 858 material testing machine to measure the load-displacement, the maximum load, and compressive stiffness. Results The novel CPC had good injectable property at room temperature, which could fill in bone defect fully and permeated into the surrounding cancellous bone. The average bone mineral density of tibial metaphysis was (0.639 ± 0.081) g/cm2 in the experimental group and (0.668 ± 0.083) g/ cm2 in the control group, showing no significant difference (t=1.012, P=0.331). The maximum load in the experimental group [(4 101 ± 813) N] was significantly higher than that in the control group [(692 ± 138) N] (t=3.932, P=0.001). The compressive stiffness was (1 363 ± 362) N/mm in the experimental group and was (223 ± 54) N/mm in the control group, showing significant difference (t=3.023, P=0.013). Conclusion The novel CPC can effectively restore the biomechanical properties of tibilal plateau in repairing Schatzker II type tibial plateau fracture by means of forcing injection combining with double-screw fixation. It could be used as an effective bone substitute in the clinical application.

    Release date:2016-08-31 04:07 Export PDF Favorites Scan
  • IN VIVO DEGRADABLE PROPERTIES OF A NOVEL INJECTABLE CALCIUM PHOSPHATE CEMENT CONTAINING POLY LACTIC-CO-GLYCOLIC ACID

    Objective To investigate the in vivo degradable properties of new calcium phosphate cement (CPC) containing poly lactic-co-glycolic acid (PLGA) so as to lay a foundation for the future clinical application. Methods A novel CPC containing PLGA (CPC/PLGA) was prepared according to a ratio of 45% dicalcium phosphate anhydrous ∶ 45% partially crystallized calcium phosphates ∶ 10% PLGA. Thirty-two adult New Zealand rabbits (weighing 2.2-3.0 kg, male or female in half) were divided into the experimental group (n=17) and the control group (n=15). The bone defect models of the bilateral femoral condyles (4.5 mm in diameter and 1.5 cm in depth) were made by drilling hole. Defect at the right side was repaired with CPC/ PLGA in the experimental group and with CPC in the control group, while defect at the left side was not treated as blank control. The general condition of rabbits was observed after operation; the histological observation and bone histomorphometric analysis were performed at 2, 4, 8, 16, and 24 weeks; and scanning electronic microscope (SEM) observation was performed at 8 and 16 weeks after operation. Results All rabbits survived to the end of experiment. The histological observation showed: CPC/PLGA degraded gradually, and the new-born bone trabecula ingrew; bone trabeculae became rough and b; and CPC/PLGA almost biodegraded at 24 weeks in the experimental group. The CPC degradation was much slower in the control group than in the experimental group. The total bone tissue percentage was 44.9% ± 23.7% in the experimental group, and 25.7% ± 10.9% in the control group, showing significant difference between 2 groups (t=3.302, P=0.001); and the bone tissue percentage showed significant difference between 2 groups at 8, 16, and 24 weeks (P lt; 0.05). The results of SEM observation showed that the pore size was 100-300 μm at 8 weeks after operation, new-born bone trabecula grew into the pores and combined bly with residual cement in the experimental group. Conclusion Novel CPC/PLGA has good in vivo degradable properties, and it can be an ideal bone substitute in future clinical application.

    Release date:2016-08-31 04:24 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content