west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "astrocytes" 3 results
  • EPIDERMAI GROWTH FACTOR SECRETED BY ASTROCYTES STIMULATED WITH TACROLIMUS PROMOTING NEURITE OUTGROWTH

    ObjectiveTo illustrate the role of epidermal growth factor (EGF) secreted by astrocytes in the process of tacrolimus (FK506) in promoting neurite outgrowth. MethodsThe spinal cord astrocytes and neuronal cells were isolated respectively from 2-day-old Sprague Dawley (SD) rats and 15-day SD pregnant rats, and cultured in vitro and identified by immunofluorescence staining. The spinal cord astrocytes were cultured with 20 μmol/L FK506 medium in the experimental group, and with FK506 free medium in the control group. The supernatant was collected after 24 hours for preparing conditioned medium, and astrocytes were collected. EGF proteins in the conditioned medium were detected with ELISA, and EGF gene expressions of astrocytes were detected with real-time quantitative PCR (RT-qPCR). The spinal cord neurons were cultured respectively with conditioned medium from the experimental group (FK506-CM) and the control group (C-CM) in group A and group B, also with neutralized C-CM and neutralized FK506-CM with anti-EGF neutralizing antibodies in group C and group D. Both the total neurite length and the longest neurite length were measured and compared among groups. ResultsBoth astrocytes and neurons were confirmed by immunofluorescence staining. The EGF content of experimental group (0.241±0.044) was significantly higher than that of the control group (0.166±0.014) (t=3.93, P=0.01); EGF gene expression of the experimental group (1.12±0.25) was significantly higher than that of the control group (0.46±0.11) (t=5.78, P=0.00). The neurite length measurement displayed that the total neurite length and the longest neurite length of groups C and D were significantly shorter than those of groups A and B (P<0.05). Both the total and longest neurite length of group A were significantly longer than those of group B (P<0.05), but no significant difference was shown between groups C and D (P>0.05). ConclusionThe EGF secreted by spinal cord astrocytes can promote the neurite outgrowth. So spinal cord astrocytes can be used as an important intermediary target of FK506 to promote the recovery of neurological function.

    Release date: Export PDF Favorites Scan
  • Progress on the roles of glia in postoperative cognitive dysfunction

    Postoperative cognitive dysfunction (POCD) is one of the most common complications after surgery under general anesthesia and usually manifests as newly presented cognitive impairment. However, the mechanism of POCD is still unclear. In addition to neurons, glial cells including microglia, astrocytes and oligodendrocytes, represent a large cell population in the nervous system. The bi-directional communication between neurons and glia provides basis for neural circuit function. Recent studies suggest that glial dysfunctions may contribute to the occurrence and progress of POCD. In this paper, we review the relevant work on POCD, which may provide new insights into the mechanism and therapeutic strategy for POCD.

    Release date:2020-10-20 05:56 Export PDF Favorites Scan
  • Experimental study of M2 microglia transplantation promoting spinal cord injury repair in mice

    Objective To investigate the effect of M2 microglia (M2-MG) transplantation on spinal cord injury (SCI) repair in mice. Methods Primary MG were obtained from the cerebral cortex of 15 C57BL/6 mice born 2-3 days old by pancreatic enzyme digestion and identified by immunofluorescence staining of Iba1. Then the primary MG were co-cultured with interleukin 4 for 48 hours (experimental group) to induce into M2 phenotype and identified by immunofluorescence staining of Arginase 1 (Arg-1) and Iba1. The normal MG were harvested as control (control group). The dorsal root ganglion (DRG) of 5 C57BL/6 mice born 1 week old were co-cultured with M2-MG for 5 days to observe the axon length, the DRG alone was used as control. Forty-two 6-week-old female C57BL/6 mice were randomly divided into sham group (n=6), SCI group (n=18), and SCI+M2-MG group (n=18). In sham group, only the laminae of T10 level were removed; SCI group and SCI+M2-MG group underwent SCI modeling, and SCI+M2-MG group was simultaneously injected with M2-MG. The survival of mice in each group was observed after operation. At immediate (0), 3, 7, 14, 21, and 28 days after operation, the motor function of mice was evaluated by Basso Mouse Scale (BMS) score, and the gait was evaluated by footprint experiment at 28 days. The spinal cord tissue was taken after operation for immunofluorescence staining, in which glial fibrillary acidic protein (GFAP) staining at 7, 14, and 28 days was used to observe the injured area of the spinal cord, neuronal nuclei antigen staining at 28 days was used to observe the survival of neurons, and GFAP/C3 double staining at 7 and 14 days was used to observe the changes in the number of A1 astrocytes. Results The purity of MG in vitro reached 90%, and the most of the cells were polarized into M2 phenotype identified by Arg-1 immunofluorescence staining. M2-MG promoted the axon growth when co-cultured with DRGs in vitro (P<0.05). All groups of mice survived until the experiment was completed. The hind limb motor function of SCI group and SCI+M2-MG group gradually recovered over time. Among them, the SCI+M2-MG group had significantly higher BMS scores than the SCI group at 21 and 28 days (P<0.05), and the dragging gait significantly improved at 28 days, but it did not reach the level of the sham group. Immunofluorescence staining showed that compared with the SCI group, the SCI+M2-MG group had a smaller injury area at 7, 14, and 28 days, an increase in neuronal survival at 28 days, and a decrease in the number of A1 astrocytes at 7 and 14 days, with significant differences (P<0.05). ConclusionM2-MG transplantation improves the motor function of the hind limbs of SCI mice by promoting neuron survival and axon regeneration. This neuroprotective effect is related to the inhibition of A1 astrocytes polarization.

    Release date:2024-02-20 04:11 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content