This study aims to explore the differences of event related potential (ERP) between attention deficit hyperactivity disorder (ADHD) and normal children, so that these differences provide scientific basis for the diagnosis of ADHD. Eight children were identified to be ADHD group by the diagnostic criteria of DSM IV (diagnostic and statistical manual of mental disorders IV), and the control group also consisted of 8 normal children. Modified visual continuous performance test (CPT) was used as the experiment paradigm. The experiment included two major conditions, i.e. Go and NoGo. All the 16 subjects participated in the study. A high density EEG acquisition instrument was used to record the EEG signal and processed these EEG data by means of ERP and spectrum analysis. P2 N2 peak peak value and spectral peak around 11 Hz were analyzed between ADHD subjects and those in the control group, and then statistical tests were applied to these two groups. Results showed that: ① Under the condition of Go, ADHD group had a significant lower P2 N2 peak peak value than the values in the control group ( P< 0.05); but under the condition of NoGo there was no significant difference in between. ② Compared with the control group, the ADHD group had significant lower spectral amplitude around 11 Hz under the condition of NoGo ( P< 0.05). However, under the condition of Go the difference was insignificant. In conclusion, there is certain cognitive dysfunction in ADHD children. P2-N2 peak-peak value and spectral peak around 11 Hz could be considered as clinical evaluation indexes of ADHD children′s cognitive function. These two objective indexes provide an early diagnosis and effective treatment of ADHD .
Aiming at the difference between the brain networks of children with attention deficit hyperactivity disorder (ADHD) and normal children in the task-executing state, this paper conducted a comparative study using the network features of the visual function area. Functional magnetic resonance imaging (fMRI) data of 23 children with ADHD [age: (8.27 ± 2.77) years] and 23 normal children [age: (8.70 ± 2.58) years] were obtained by the visual capture paradigm when the subjects were performing the guessing task. First, fMRI data were used to build a visual area brain function network. Then, the visual area brain function network characteristic indicators including degree distribution, average shortest path, network density, aggregation coefficient, intermediary, etc. were obtained and compared with the traditional whole brain network. Finally, support vector machines (SVM) and other classifiers in the machine learning algorithm were used to classify the feature indicators to distinguish ADHD children from normal children. In this study, visual brain function network features were used for classification, with a classification accuracy of up to 96%. Compared with the traditional method of constructing a whole brain network, the accuracy was improved by about 10%. The test results show that the use of visual area brain function network analysis can better distinguish ADHD children from normal children. This method has certain help to distinguish the brain network between ADHD children and normal children, and is helpful for the auxiliary diagnosis of ADHD children.
Habitual snoring can occur in both children and adults. If it is physiological snoring, it usually does not require special intervention. If it is pathological snoring, such as snoring caused by central diseases and obstructive diseases, it needs to be treated as soon as possible. Habitual snoring has more harm to children, such as causing sleep structure disorders, slow growth and development. During the snoring process, children’s sleep fragmentation and hypoxia state lead to changes in the transmission of neurochemicals in the brain’s precortex, causing adverse effects on brain function and inducing attention deficit hyperactivity disorder. This article reviews relevant research in recent years to further elucidate the relationship between children’s habitual snoring and attention deficit hyperactivity disorder, and provide a basis for future clinical research and intervention.