west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "blind source separation" 5 results
  • Research on the Methods for Electroencephalogram Feature Extraction Based on Blind Source Separation

    In the present investigation, we studied four methods of blind source separation/independent component analysis (BSS/ICA), AMUSE, SOBI, JADE, and FastICA. We did the feature extraction of electroencephalogram (EEG) signals of brain computer interface (BCI) for classifying spontaneous mental activities, which contained four mental tasks including imagination of left hand, right hand, foot and tongue movement. Different methods of extract physiological components were studied and achieved good performance. Then, three combined methods of SOBI and FastICA for extraction of EEG features of motor imagery were proposed. The results showed that combining of SOBI and ICA could not only reduce various artifacts and noise but also localize useful source and improve accuracy of BCI. It would improve further study of physiological mechanisms of motor imagery.

    Release date: Export PDF Favorites Scan
  • The Blind Source Separation Method Based on Self-organizing Map Neural Network and Convolution Kernel Compensation for Multi-channel sEMG Signals

    A new method based on convolution kernel compensation (CKC) for decomposing multi-channel surface electromyogram (sEMG)signals is proposed in this paper. Unsupervised learning and clustering function of self-organizing map (SOM) neural network are employed in this method. An initial innervations pulse train (IPT) is firstly estimated, some time instants corresponding to the highest peaks from the initial IPT are clustered by SOM neural network. Then the final IPT can be obtained from the observations corresponding to these time instants. In this paper, the proposed method was tested on the simulated signal, the influence of signal to noise ratio (SNR), the number of groups clustered by SOM and the number of highest peaks selected from the initial pulse train on the number of reconstructed sources and the pulse accuracy were studied, and the results show that the proposed approach is effective in decomposing multi-channel sEMG signals.

    Release date:2021-06-24 10:16 Export PDF Favorites Scan
  • Evoked Potential Blind Extraction Based on Fractional Lower Order Spatial Time-Frequency Matrix

    The impulsive electroencephalograph (EEG) noises in evoked potential (EP) signals is very strong, usually with a heavy tail and infinite variance characteristics like the acceleration noise impact, hypoxia and etc., as shown in other special tests. The noises can be described by α stable distribution model. In this paper, Wigner-Ville distribution (WVD) and pseudo Wigner-Ville distribution (PWVD) time-frequency distribution based on the fractional lower order moment are presented to be improved. We got fractional lower order WVD (FLO-WVD) and fractional lower order PWVD (FLO-PWVD) time-frequency distribution which could be suitable for α stable distribution process. We also proposed the fractional lower order spatial time-frequency distribution matrix (FLO-STFM) concept. Therefore, combining with time-frequency underdetermined blind source separation (TF-UBSS), we proposed a new fractional lower order spatial time-frequency underdetermined blind source separation (FLO-TF-UBSS) which can work in α stable distribution environment. We used the FLO-TF-UBSS algorithm to extract EPs. Simulations showed that the proposed method could effectively extract EPs in EEG noises, and the separated EPs and EEG signals based on FLO-TF-UBSS were almost the same as the original signal, but blind separation based on TF-UBSS had certain deviation. The correlation coefficient of the FLO-TF-UBSS algorithm was higher than the TF-UBSS algorithm when generalized signal-to-noise ratio (GSNR) changed from 10 dB to 30 dB and α varied from 1.06 to 1.94, and was approximately equal to 1. Hence, the proposed FLO-TF-UBSS method might be better than the TF-UBSS algorithm based on second order for extracting EP signal under an EEG noise environment.

    Release date: Export PDF Favorites Scan
  • Classifying Electroencephalogram Signal Using Under-determined Blind Source Separation and Common Spatial Pattern

    One of the key problems of brain-computer interfaces (BCI) is low signal-to-noise ratio (SNR) of electroencephalogram (EEG) signals. It affects recognition performance. To remove the artifact and noise, block under-determined blind source separation method based on the small number of channels is proposed in this paper. The non-stationary EEG signals are turned into block stationary signals by piecewise. The mixing matrix is estimated by the second-order under-determined blind mixing matrix identification. Then, the beamformer based on minimum mean square error separates the original sources of signals. Eventually, the reconstructed EEG for mixed signals removes the unwanted components of source signals to achieve suppressing artifact. The experiment results on the real motor imagery BCI indicated that the block under-determined blind source separation method could reconstruct signals and remove artifact effectively. The accuracy of motor imagery task of BCI has been greatly improved.

    Release date: Export PDF Favorites Scan
  • Comparison and applicability study of blood volume pulse extraction based on facial video

    Blind source separation technique based on independent component analysis (ICA) can separate blood volume pulse (BVP) from the facial video and then realize the telemetry of heart rate, blood oxygen saturation, respiratory rate and other vital signs parameters. However, the superiority of ICA in BVP extraction has not been demonstrated in the existing researches. Some researchers suggested using traditional G-channel method for BVP extraction (G-BVP) instead of ICA method (ICA-BVP). This study investigated the applicability of ICA-BVP comparatively. To solve the inherent permutation problem of ICA, a spectral kurtosis-based method was proposed for BVP identification. The experimental results based on the facial video datasets from 9 subjects shows that ICA-BVP method has apparent advantages in motion artifacts attenuation and ambient light changes elimination. The kurtosis-based method achieved a good performance in BVP identification and dynamic heart rate (HR) estimation. In practical application, the proposed ICA-BVP method could present a better stability and accuracy in vital signs parameters extraction.

    Release date:2017-04-13 10:03 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content