west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "brain control" 2 results
  • Direct brain-controlled multi-robot cooperation task

    Brain control is a new control method. The traditional brain-controlled robot is mainly used to control a single robot to accomplish a specific task. However, the brain-controlled multi-robot cooperation (MRC) task is a new topic to be studied. This paper presents an experimental research which received the "Innovation Creative Award" in the brain-computer interface (BCI) brain-controlled robot contest at the World Robot Contest. Two effective brain switches were set: total control brain switch and transfer switch, and BCI based steady-state visual evoked potentials (SSVEP) was adopted to navigate a humanoid robot and a mechanical arm to complete the cooperation task. Control test of 10 subjects showed that the excellent SSVEP-BCI can be used to achieve the MRC task by appropriately setting up the brain switches. This study is expected to provide inspiration for the future practical brain-controlled MRC task system.

    Release date:2019-02-18 02:31 Export PDF Favorites Scan
  • Research and application of magnetic resonance coordinate transformation method for brain control technology of carp robots

    To solve the problem of precise positioning of carp brain tissue coordinates, it is proposed in this paper for a method for transforming the coordinates of magnetic resonance imaging of carp brain tissue into the coordinates of electrode implantation using a brain stereotaxic apparatus. In this study, the 3.0T magnetic resonance imaging instrument was used to scan the carp brain. We independently established the three-dimensional positioning coordinate system of the brain, the three-dimensional coordinate assistance system of skull surface and the three-dimensional coordinate assistance system in brain tissue. After two coordinate transformations, the magnetic resonance image coordinates of the brain electrodes implantation sites were converted into the three-dimensional stereotactic coordinate system to guide the electrodes implantation. The experimental groups were divided into two groups, A and B. Group A was the group of magnetic resonance imaging apparatus combining with the brain stereotaxic apparatus, and group B was the group of brain atlas combining with the brain stereotaxic apparatus. Each group had 20 tails of carps (n = 20). This two methods were used to implant the electrodes into the cerebellar motor area. The underwater experiments of the carp robots were carried out to test the two methods. The results showed that the accuracy of the implanted electrodes were 90% in group A and 60% in group B. The success rate of group A was significantly higher than that of group B (P < 0.05). Therefore, the new method in this paper can accurately determine the coordinates of carp brain tissue.

    Release date:2019-02-18 02:31 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content