The purpose of this study was to investigate the effect of biaxial tensile strain on the osteogenic differentiation of rat bone marrow mesenchymal stem cells (rBMSCs) in vitro. The rBMSCs were isolated from tibia and femur of 4 weeks-old Sprague-Dawley (SD) rats. The rBMSCs were cultured in DMEM-LG complete culture medium and grew to subconfluence in the cell culture device for loading tensile strain. The biaxial tensile strain was applied to the rBMSCs for periods of 2, 4 and 6 hours every day, respectively, lasting 3 days. The amplitude of biaxial tensile strain applied to the rBMSCs were 1%, 2% and 5% respectively, at a frequency of 1 Hz. Unstrained rBMSCs were used as blank control (control group). The rBMSCs cultured with DMEM-LG complete culture medium containing 100 nmol/L β-Estradiol (E2) were used as positive control. The mRNA expression of alkaline phosphatase (ALP), collagen typeⅠ (ColⅠ), Runt-related transcription factor 2 (Runx2) and osteocalcin (OCN) was examined with real-time quantitative PCR and the protein expression of ALP, ColⅠ, Runx2 and OCN was detected with Western blot method. The results showed as follws: (1) The mRNA and protein expression of the ALP, ColⅠ, Runx2, OCN were significantly higher in rBMSCs of the E2 group than those in the control group (P<0.05). (2) The mRNA and protein expression level of the ALP, Runx2 were higher markedly in the 1% tensile strain groups than those in the control group (P<0.05), but lower than those in the E2 group (P<0.05). (3) The mRNA and protein expression level of the ALP, ColⅠ, Runx2, OCN were significantly higher in the 2% tensile strain groups than those in the control group (P<0.05), and the mRNA and protein expression level of ColⅠ and Runx2 in the group applied with 2% amplitude of tensile strain for 4 h/d was significantly higher than those in E2 group (P<0.05). (4) The mRNA and protein expression level of the ALP, ColⅠ, Runx2 were significantly higher in the groups applied with 5% amplitude of tensile strain for 2 h/d or for 4 h/d than those in the control group (P<0.05). In our study, E2 and mechanical stimulation played an important role in the regulation of differentiation of rBMSCs into osteoblasts, and the manner applied with the 2% amplitude of tensile strain for 4 h/d, lasting 3 days was an optimal stimulus for up-regulating the mRNA and protein expression of ALP, ColⅠ, Runx2, OCN of rBMSCs.
ObjectiveElectrospinning technique was used to manufacture polycaprolactone (PCL)/collagen typeⅠ nanofibers orientated patches and to study their physical and chemical characterization, discussing their feasibility as synthetic patches for rotator cuff repairing.MethodsPCL patches were prepared by electrospinning with 10% PCL electrospinning solution (control group) and PCL/collagen typeⅠorientated nanofibers patches were prepared by electrospinning with PCL electrospinning solution with 25% collagen type Ⅰ(experimental group). The morphology and microstructure of the two patches were observed by gross and scanning electron microscopy, and the diameter and porosity of the fibers were measured; the mechanical properties of the patches were tested by uniaxial tensile test; the composition of the patches was analyzed by Fourier transform infrared spectroscopy; and the contact angle of the patch surface was measured. Two kinds of patch extracts were co-cultured with the third generation of rabbit tendon stem cells. Cell counting kit 8 (CCK-8) was used to detect the toxicity and cell proliferation of the materials. Normal cultured cells were used as blank control group. Rabbit tendon stem cells were co-cultured with the two patches and stained with dead/living cells after 3 days of in vitro culture, and laser confocal scanning microscopy was used to observe the cell adhesion and activity on the patch.ResultsGross and scanning electron microscopy showed that the two patch fibers were arranged in orientation. The diameter of patch fibers in the experimental group was significantly smaller than that in the control group (t=26.907, P=0.000), while the porosity in the experimental group was significantly larger than that in the control group (t=2.506, P=0.032). The tensile strength and Young’s modulus of the patch in the experimental group were significantly higher than those in the control group (t=3.705, P=0.029; t=4.064, P=0.034). Infrared spectrum analysis showed that PCL and collagen type Ⅰ were successfully mixed in the experimental group. The surface contact angle of the patch in the experimental group was (73.88±4.97)°, which was hydrophilic, while that in the control group was (128.46±5.10) °, which was hydrophobic. There was a significant difference in the surface contact angle between the two groups (t=21.705, P=0.002). CCK-8 test showed that with the prolongation of culture time, the cell absorbance (A) value increased gradually in each group, and there was no significant difference between the experimental group and the control group at each time point (P>0.05). Laser confocal scanning microscopy showed that rabbit tendon stem cells could adhere and grow on the surface of both patches after 3 days of culture. The number of cells adhered to the surface of the patches in the experimental group was more than that in the control group, and the activity was better.ConclusionPCL/ collagen type Ⅰ nanofibers orientated patch prepared by electrospinning technology has excellent physical and chemical properties, cell adhesion, and no cytotoxicity. It can be used as an ideal scaffold material in tendon tissue engineering for rotator cuff repair in the future.
ObjectiveTo investigate the effect of echinococcus granulosus protoscolices on the differentiation of bone marrow mesenchymal stem cells (BMSCs) into fibroblasts.MethodsFemur bone marrow of 4-week-old C57BL/6 mice was taken and BMSCs were isolated and cultured by adherent culture. Echinococcus granulosus protoscolices was extracted from the liver of sheep infected with echinococcus granulosus. The experiment was divided into two groups. The experimental group was co-cultured with the 3rd generation BMSCs and the echinococcus granulosus protoscolices, and the control group was the 3rd generation BMSCs. Before and after co-culture, the morphology of BMSCs and the activity of echinococcus granulosus protoscolices were observed by inverted microscope. After cultured for 1, 3, 5, and 7 days, the mRNA expressions of transforming growth factor β1 (TGF-β1), collagen type Ⅰ, and collagen type Ⅲ were detected by real-time fluorescent quantitative PCR, the protein expressions of TGF-β1, collagen type Ⅰ, collagen type Ⅲ, Smad7, and phosphorylated Smad2/3 were detected by Western blot, and the contents of collagen type Ⅰ and collagen type Ⅲ in the supernatant of the two groups were detected by ELISA.ResultsAfter 7 days of co-culture, the morphology of BMSCs changed into fusiform and irregular triangle, which was closer to the mouse fibroblasts. The relative mRNA expressions of TGF-β1, collagen type Ⅰ, and collagen type Ⅲ in the experimental group were significantly higher than those in the control group; the relative protein expressions of TGF-β1, collagen type Ⅰ, collagen type Ⅲ, and phosphorylated Smad2/3 in the experimental group were significantly higher than those in the control group, and the relative protein expression of Smad7 in the experimental group was significantly lower than that in the control group; the contents of collagen type Ⅰ and collagen type Ⅲ in the supernatant of the experimental group were significantly higher than those in the control group. The differences between the two groups were significant (P<0.05).ConclusionEchinococcus granulosus protoscolices may promote the secretion of collagen type Ⅰ, collagen type Ⅲ, and TGF-β1 by TGF-β1/Smad signal pathway, which can promote the fibrosis of BMSCs that related to the formation of fibrocystic wall by echinococcosis.