west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "curcumin" 4 results
  • Preparation and drug release of curcumin-loaded poly (α-isobutyl cyanoacrylate) microspheres

    Curcumin-loaded poly (α-isobutyl cyanoacrylate) microspheres (Cur-HP-β-CD-PiBCA) were prepared by one-step emulsification with α-isobutyl cyanoacrylate as materials, poloxamer 188 as emulsifier, and curcumin complex with hydroxypropyl-β-cyclodextrin (Cur-HP-β-CD) as drug prepared by kneading method. Effects of emulsifier and drug concentration on microspheres size and distribution, drug loading and encapsulation efficiency were investigated in detail. And the curcumin release of drug-loaded microspheres was also studied. Results showed that as the emulsifier concentration increased from 0.01% to 0.07%, particle size of the drug-loaded microspheres decreased while particle size distribution, drug loading and entrapment efficiency increased. The optimized concentration of surfactant was 0.05%. With increasing the concentration of drug from 0.03% to 0.07%, drug loading of Cur-HP-β-CD-PiBCA increased, but encapsulation efficiency decreased. Additionally, the results of drug release experiments revealed that the higher drug loading of Cur-HP-β-CD-PiBCA was, the lower cumulative release percentage was. Drug-loading of cumulative inclusions in HP-β-CD by PiBCA can improve its wettability, and increase the degree of dissolution and bioavailability.

    Release date:2018-10-19 03:21 Export PDF Favorites Scan
  • Curcumin can inhibit the lipopolysaccharide-induced up-regulation of endogenousβ-glucoronidase expression

    ObjectiveTo investigate the effect of curcumin on the expression regulation of endogenousβ-glucoronidase (β-GD) induced by lipopolysaccharide (LPS).Methods① Human normal intrahepatic biliary epithelial cell line (HiBEpiC) cells in the logarithmic growth phase were divided into blank control group (0 h group) and 7 different stimulation time groups. The cell density was adjusted to 1×104/mL, and the cells were stimulated with 100 mg/mL LPS for 1, 3, 6, 18, and 24 hours respectively, including another two groups where the cells were cultured with LPS-free medium for 18 and 24 hours after LPS stimulation for 24 h. ② HiBEpiC cells in the logarithmic growth phase were divided into blank control group, LPS+low, medium, and high concentration curcumin group. The cell density was adjusted to 1×104/mL. In the blank control group, cells were not stimulated with any reagent; in the LPS group, cells were stimulated with 100 mg/mL LPS, in the other three groups, the cells were stimulated with 100 mg/mL LPS and simultaneously 20, 40, and 80 μmol/L curcumin, respectively, for 24 hours. The expressions of c-myc and endogenous β-GD were detected by Western blot method.Results① The expressions of endogenous β-GD and c-myc in HiBEpiC cells gradually increased with the prolongation of treatment time by LPS, and the expression levels of β-GD and c-myc at each time point group were significantly different from those in the 0 h group (P<0.05). ② There were significant difference between any two groups of the blank control group, LPS group, LPS+low concentration of curcumin group, LPS+medium concentration of curcumin group, and LPS+high concentration of curcumin group (P<0.05).ConclusionCurcumin is able to inhibit the increased expression of endogenous β-GD induced by LPS, possibly via inhibiting expression of c-myc.

    Release date:2019-08-12 04:33 Export PDF Favorites Scan
  • Curcumin inhibits Toll-like receptor 4/high mobility group box 1 pathway to protect lipopolysaccharide-induced acute lung injury

    ObjectiveTo investigate the protective effect and mechanism of curcumin on lipopolysaccharide (LPS)-induced acute lung injury.MethodsTotally 24 SD rats were randomly divided into a control group, a LPS group and a LPS+curcumin group (n=8 in each group). The degree of lung injury (oxygen partial pressure, wet/dry ratio, pathological scores) and inflammatory levels [tumor necrosis factor (TNF)-α, interleukin (IL)-6, monocyte chemotactic protein (MCP)-1, Toll-like receptor 4 (TLR4), mobility group box 1 protein (HMGB1) expression] of the lung were detected in different groups.ResultsOxygen partial pressure was significantly lower in the LPS group than that in the control group (P<0.05), while wet/dry ratio, pathological scores and expression levels of TNF-α, IL-6, MCP-1, TLR4 and HMGB1 were significantly higher in the LPS group than those in the control group (P<0.05). Compared with the LPS group, curcumin significantly reduced wet/dry ratio, pathological scores and expression levels of TNF-α, IL-6, MCP-1, TLR4 and HMGB1 in the LPS+curcumin group (P<0.05), while it significantly improved oxygen partial pressure (P<0.05).ConclusionCurcumin might protect LPS-induced acute lung injury through inhibition of TLR4-HMGB1-inflammation pathway.

    Release date:2020-06-29 08:13 Export PDF Favorites Scan
  • A study of locally injecting curcumin-loaded mesoporous silica nanoparticles in delaying coccygeal intervertebral disc degeneration in rats

    Objective To investigate the effect of local injection of curcumin-loaded mesoporous silica nanoparticles (Cur@MSN) on the repair and treatment of degenerative intervertebral disc tissue in rats, and provide a new strategy for the treatment of intervertebral disc degeneration. Methods Mesoporous silica nanoparticles (MSN) and Cur@MSN were prepared according to the method reported in the literature. Rat nucleus pulposus cells were co-cultured with curcumin and Cur@MSN, respectively, and the growth status and activity of cells in normal environment and inflammatory environment (adding lipopolysaccharide) were observed respectively. Twelve 8-week-old SD rats were randomly divided into 4 groups, including normal group, degeneration group, curcumin group, and Cur@MSN group, with 3 rats in each group. Acupuncture degeneration model was established in coccygeal intervertebral discs (Co7-8, Co8-9) of rats, and corresponding intervention were injected. Imaging, gross pathology, and histological examination were performed after 4 weeks, respectively, to observe the tissue structure and pathological changes of intervertebral discs. Results Under scanning electron microscope, Cur@MSN was spherical in shape, with groove-like pores on its surface. Particle size analysis showed that the particle size of MSN was concentrated in 120-160 nm, and that of Cur@MSN was distributed in 130-170 nm. Zeta potential analysis showed that the average Zeta potential of MSN, curcumin, and Cur@MSN was −12.5, −22.5 and −13.5 mV, respectively. The entrapment efficiency of Cur@MSN was 20.4%, and the drug loading rate was 0.2%. Curcumin released by Cur@MSN in 12 h accounted for about 60% of the total drug dose, and curcumin released in 28 h accounted for about 70%. In cell experiment, there was no significant difference in cell proliferation absorbance among the groups in normal environment (P>0.05), but the cell proliferation absorbance in the Cur@MSN group on the 3rd and 5th day in inflammatory environment was significantly higher than that in the control group and the curcumin group (P<0.01). The percentage of disc height index and the Pfirrmann grade of the Cur@MSN group were better than those of the degeneration group and the curcumin group (P<0.01). The histological score of the Cur@MSN group was lower than that of the degeneration group and the curcumin group (P<0.01). Conclusions Cur@MSN can delay the degeneration process of rat coccygeal intervertebral disc, and has certain repair and treatment effects on its degenerated intervertebral disc. Among them, curcumin can delay the degeneration of intervertebral disc by inhibiting inflammation, and the loading of MSN is helpful for curcumin to exert its biological effects.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content