west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "extreme learning machine" 4 results
  • Remote Intelligent Brunnstrom Assessment System for Upper Limb Rehabilitation for Post-stroke Based on Extreme Learning Machine

    In order to realize an individualized and specialized rehabilitation assessment of remoteness and intelligence, we set up a remote intelligent assessment system of upper limb movement function of post-stroke patients during rehabilitation. By using the remote rehabilitation training sensors and client data sampling software, we collected and uploaded the gesture data from a patient's forearm and upper arm during rehabilitation training to database of the server. Then a remote intelligent assessment system, which had been developed based on the extreme learning machine (ELM) algorithm and Brunnstrom stage assessment standard, was used to evaluate the gesture data. To evaluate the reliability of the proposed method, a group of 23 stroke patients, whose upper limb movement functions were in different recovery stages, and 4 healthy people, whose upper limb movement functions were normal, were recruited to finish the same training task. The results showed that, compared to that of the experienced rehabilitation expert who used the Brunnstrom stage standard table, the accuracy of the proposed remote Brunnstrom intelligent assessment system can reach a higher level, as 92.1%. The practical effects of surgery have proved that the proposed system could realize the intelligent assessment of upper limb movement function of post-stroke patients remotely, and it could also make the rehabilitation of the post-stroke patients at home or in a community care center possible.

    Release date: Export PDF Favorites Scan
  • A Classification Algorithm for Epileptic Electroencephalogram Based on Wavelet Multiscale Analysis and Extreme Learning Machine

    The automatic classification of epileptic electroencephalogram (EEG) is significant in the diagnosis and therapy of epilepsy. A classification algorithm for epileptic EEG based on wavelet multiscale analysis and extreme learning machine (ELM) is proposed in this paper. Firstly, wavelet multiscale analysis is applied to the original EEG to extract its sub-bands. Then, two nonlinear methods, i.e. Hurst exponent (Hurst) and sample entropy (SamEn) are used to the feature extraction of EEG and its sub-bands. Finally, ELM algorithm is employed in epileptic EEG classification with the nonlinear features. The proposed method in this paper achieved 99.5% classification accuracy for the discrimination between epileptic ictal and interictal EEG. The result implies that this method has good prospects in the diagnosis and therapy of epilepsy.

    Release date:2016-12-19 11:20 Export PDF Favorites Scan
  • A new method for classification of Alzheimer’s disease combined with structural magnetic resonance imaging texture features

    In this paper, a new method for the classification of Alzheimer’s disease (AD) using multi-feature combination of structural magnetic resonance imaging is proposed. Firstly, hippocampal segmentation and cortical thickness and volume measurement were performed using FreeSurfer software. Then, histogram, gradient, length of gray level co-occurrence matrix and run-length matrix were used to extract the three-dimensional (3D) texture features of the hippocampus, and the parameters with significant differences between AD, MCI and NC groups were selected for correlation study with MMSE score. Finally, AD, MCI and NC are classified and identified by the extreme learning machine. The results show that texture features can provide better classification results than volume features on both left and right sides. The feature parameters with complementary texture, volume and cortical thickness had higher classification recognition rate, and the classification accuracy of the right side (100%) was higher than that of the left side (91.667%). The results showed that 3D texture analysis could reflect the pathological changes of hippocampal structures of AD and MCI patients, and combined with multi-feature analysis, it could better reflect the essential differences between AD and MCI cognitive impairment, which was more conducive to clinical differential diagnosis.

    Release date:2019-02-18 03:16 Export PDF Favorites Scan
  • Single-modal neuroimaging computer aided diagnosis for schizophrenia based on ensemble learning using privileged information

    Neuroimaging technologies have been applied to the diagnosis of schizophrenia. In order to improve the performance of the single-modal neuroimaging-based computer-aided diagnosis (CAD) for schizophrenia, an ensemble learning algorithm based on learning using privileged information (LUPI) was proposed in this work. Specifically, the extreme learning machine based auto-encoder (ELM-AE) was first adopted to learn new feature representation for the single-modal neuroimaging data. Random project algorithm was then performed on the learned high-dimensional features to generate several new feature subspaces. After that, multiple feature pairs were built among these subspaces to work as source domain and target domain, respectively, which were used to train multiple support vector machine plus (SVM+) classifier. Finally, a strong classifier is learned by combining these SVM+ classifiers for classification. The proposed algorithm was evaluated on a public schizophrenia neuroimaging dataset, including the data of structural magnetic resonance imaging (sMRI) and functional MRI (fMRI). The results showed that the proposed algorithm achieved the best diagnosis performance. In particular, the classification accuracy, sensitivity and specificity of the proposed algorithm were 72.12% ± 8.20%, 73.50% ± 15.44% and 70.93% ± 12.93%, respectively, on the sMRI data, and it also achieved the classification accuracy of 72.33% ± 8.95%, sensitivity of 68.50% ± 16.58% and specificity of 75.73% ± 16.10% on the fMRI data. The proposed algorithm overcomes the problem that the traditional LUPI methods need the additional privileged information modality as source domain. It can be directly applied to the single-modal data for classification, and also can improve the classification performance. Therefore, it suggests that the proposed algorithm will have wider applications.

    Release date:2020-08-21 07:07 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content