west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "femoral attachment" 2 results
  • Optimization location of femoral attachment in medial patellofemoral ligament reconstruction assisted with arthroscopy for patellar dislocation

    ObjectiveTo investigate the technique of optimizing the location of femoral attachment in medial patellofemoral ligament (MPFL) reconstruction assisted with arthroscopy and evaluate the effectiveness.MethodsBetween January 2014 and September 2018, 35 patients with patellar dislocation were admitted. There were 14 males and 21 females with an average age of 22.6 years (range, 16-38 years). All patients had a history of knee sprain. The disease duration ranged from 1 to 7 days (mean, 2.8 days). Patellar dislocation occurred 2-4 times (mean, 2.5 times). The preoperative Lysholm score and Kujala score were 47.60±11.24 and 48.37±9.79, respectively. The patellar congruence angle was (31.40±6.81)°, the patellar tilt angle was (29.95±5.44)°, the lateral patellofemoral angle was (−11.46±5.18)°, and the tibial tubercle-trochlear groove distance was (16.66±1.28) mm. All patients were treated by MPFL reconstruction with the semitendinosus tendon under arthroscopy. During operation, the suture anchors were inserted into the midpoint and the 1/3 point of superomedial edge of the patella. Then, the femoral tunnels were created in medial femoral condyle through limited excision. For tendon fixation, the Kirschner wires were inserted into adductor tubercle, medial epicondyle of femur, and the midpoint between the two points, as well as the anteriorly and posteriorly. Afterwards, the changes of ligament length and tension, patellar tracking, and the relationship of patella and femoral trochlea were evaluated, thereby determining the optimized femoral attachment for MPFL reconstruction. Finally, the patellar congruence angle, patellar tilt angle, and lateral patellofemoral angle were measured by imaging to assess the relationship of patella and femoral trochlea. Moreover, Lysholm score and Kujala score were used to evaluate the knee joint function.ResultsAll incisions healed by first intention without infection. All patients were followed up 12-18 months (mean, 15.4 months). At 12 months, the Lysholm score was 94.40±3.99 and the Kujala score was 92.28±4.13, which were significant higher than those before operation (P<0.05). No patellar dislocation occurred during follow-up. At 12 months, the patellar congruence angle was (6.57±4.59)°, the patellar tilt angle was (9.73±2.82)°, the lateral patellofemoral angle was (7.14±4.63)°, which were superior to those before operation (P<0.05).ConclusionDuring the MPFL reconstruction under arthroscopy, a higher positioning accuracy for the femoral attachment and satisfactory effectiveness can be obtained by evaluating MPFL length and tension, patellofemoral joint kinematics, and patellar tracking.

    Release date:2020-11-02 06:24 Export PDF Favorites Scan
  • Research progress on femoral attachment positioning during medial patellofemoral ligament reconstruction

    Objective To review research progress on femoral attachment positioning during medial patellofemoral ligament (MPFL) reconstruction, so as to provide a reference for accurate positioning in clinic. Methods The literature at home and abroad on femoral attachment positioning during MPFL reconstruction was extensively reviewed and summarized. Results MPFL is the main ligament that restricts patellar outward migration, so MPFL reconstruction is the main treatment for patellar dislocation, but the accuracy of intraoperative femoral attachment positioning will significantly affect the effectiveness. At present, there are three main methods for femoral attachment positioning in MPFL reconstruction, including imaging positioning, bony landmark positioning, and new technology. Among them, the main imaging positioning method is the “Schöttle point” method, but it has high requirements for fluoroscopic positioning, and can only be accurately positioned under standard lateral fluoroscopy of the femur. The bony landmark positioning method mainly locates the femoral attachment by touching or dissecting the bony landmarks such as adductor tubercles and medial epicondyle of femur, but its disadvantages are that the positioning is not accurate enough, the intraoperative visual field exposure requirements are high, and a large incision is required. In order to avoid the problem that the simple bony landmark positioning method, in recent years, the combination of bony landmarks combined with arthroscopy, three-dimensional (3D) printing technology, and robot-assisted positioning methods have begun to be used in clinical practice. New technology localization methods have shown good results by preparing guides before operation, planning positioning paths in advance, or directly using robots to assist positioning during operation. Conclusion The accurate positioning of the femoral attachment in MPFL reconstruction is crucial, and the method of accurate and rapid intraoperative determination needs to be further improved and optimized. In the future, it is expected that the combination of computer image recognition correction technology and intraoperative position assistance will solve this problem.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content