west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "fibroblasts" 27 results
  • ESTABLISHMENT OF FEEDER-FREE CULTURE SYSTEM OF HUMAN PARTHENOGENETIC EMBRYONIC STEM CELLS

    Objective To establish a safe, effective, and economic feeder-free culture system which is suitable for the culture of human parthenogenetic embryonic stem cells (hPESCs) in vitro. Methods hPESCs were cultured with mTeSRTMl medium (control group) and human foreskin fibroblasts-conditional medium (hFFs-CM) (experimental group). The growth status of hPESCs in both feeder-free culture systems were observed with inverted microscope. Alkaline phosphatase (ALP) analysis and karyotype analysis were used to study the biological characteristics of hPESCs. The expression of hPESCs pluripotent marker Oct-4 was analyzed by RT-PCR. Differentiation experiment in vivo and in vitro was applied to observe the differentiation potential of hPESCs into three germ layers. Results hPESCs had regular morphology with difficulty in differentiation in both culture systems. No obvious difference was observed in morphology and expansion speed of hPESCs between 2 groups. After subcultured for 15 passages in vitro, hPESCs in 2 groups could maintain normal female diploid karyotype 46, XX and pluripotency. The expression of Oct-4 mRNA was positive in 2 groups. hPESCs in 2 groups could form embryonic body in differentiation experiment in vitro and could develop into teratomas containing three germ layers in nude mice. Conclusion Feeder-free culture system of hFFs-CM can sustain the growth of hPESCs and keep hPESCs undifferentiated state for long. A feeder-free culture system of hPESCs is successfully established, which can support the growth of hPESCs, reduce the contamination from animals, decrease the cost of culture, and satisfy the clinical large-scale application.

    Release date:2016-08-31 04:07 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON CO-CULTURE OF HUMAN FIBROBLASTS ON DECELLULARIZED Achilles TENDON

    Objective To investigate the preparation of decellularized Achilles tendons and the effect of co-culture of human fibroblasts on the scaffold so as to provide a scaffold for the tissue engineered ligament reconstruction. Methods Achilles tendons of both hind limbs were harvested from 10 male New Zealand white rabbits (5-month-old; weighing, 4-5 kg). The Achilles tendons were decellularized using trypsin, Triton X-100, and sodium dodecyl sulfate (SDS), and then gross observation, histological examination, and scanning electron microscope (SEM) observation were performed; the human fibroblasts were seeded on the decellularized Achilles tendon, and then cytocompatibility was tested using the cell counting kit 8 method at 1, 3, 5, 7, and 9 days after co-culture. At 4 weeks after co-culture, SEM, HE staining, and biomechanical test were performed for observing cell-scaffold composite, and a comparison was made with before and after decellularization. ResultsAfter decellularization, the tendons had integrated aponeurosis and enlarged volume with soft texture and good toughness; there was no loose connective tissue and tendon cells between tendon bundles, the collagen fibers arranged loosely with three-dimensional network structure and more pores between tendon bundles; and it had good cytocompatibility. At 4 weeks after co-culture, cells migrated into the pores, and three-dimensional network structure disappeared. By biomechanical test, the tensile strength and Young’s elastic modulus of the decellularized Achilles tendon group decreased significantly when compared with normal Achilles tendons group and cell-scaffold composite group (P lt; 0.05), but no significant difference was found between normal Achilles tendons group and cell-scaffold composite group (P gt; 0.05). There was no significant difference in elongation at break among 3 groups (P gt; 0.05). ConclusionThe decellularized Achilles tendon is biocompatible to fibroblasts. It is suit for the scaffold for tissue engineered ligament reconstruction.

    Release date:2016-08-31 04:07 Export PDF Favorites Scan
  • EFFECTS OF HEAT INJURED KERATINOCYTES SUPERNATANT ON EXPRESSIONS OF COLLAGEN TYPE I, COLLAGEN TYPE III, AND MATRIX METALLOPROTEINASE 1 OF DERMAL FIBROBLASTS

    Objective To investigate the effects of heat injured keratinocytes (KC) supernatant on the expressions of collagen type I, collagen type III, and matrix metalloproteinase 1 (MMP-1) of dermal fibroblasts (Fb). Methods KC and Fb were isolated and cultured. Then the models of heat injured KC and Fb were reproduced in vitro, respectively. The heat injured and normal culture supernatant were collected respectively at 12 hours, and formulated as a 50% concentration of cell-conditioned medium. According to the culture medium, Fb at passage 3-5 was divided into 3 groups. Normal Fb was cultured with the conditioned medium containing 50% heat injured KC culture supernatant (group A), the conditioned medium containing 50% normal KC culture supernatant (group B), and DMEM (group C), respectively. The cells in 3 groups were collected at 24 hours. In addition, the cells in group A were collected at 0, 1, 2, 6, 12, 24, and 48 hours, respectively. Normal Fb was cultured with the conditioned medium containing 50% heat injured Fb culture supernatant. Then, the cells were collected at 0, 1, 2, 6, 12, 24, and 48 hours, respectively. The mRNA levels of the collagen type I, collagen type III, and MMP-1 of Fb were measured by real-time fluorescent quantitative PCR techniques. Results At 24 hours after cultured with supernatant of heat injured KC,mRNA relative expression levels of collagen type I, collagen type III, and MMP-1 in group A were significantly higher than those in groups B and C (P lt; 0.05). The mRNA relative expression levels of collagen type I, collagen type III, and MMP-1 in group A gradually increased with time going, showing significant differences between 0 hour and 2, 6, 12, 24, and 48 hours (P lt; 0.05); significant differences were found between different time points after 2 hours (P lt; 0.05). After Fb was treated with supernatant of heat injured Fb, the mRNA relative expression levels of MMP-1 gradually decreased with time going, showing significant differences between 0 hour and 1, 2, 6, 12, 24, and 24 hours (P lt; 0.05); after 2 hours of culture, significant differences were found among different time points (P lt; 0.05). Conclusion Heat injured KC supernatant may regulate the mRNA expressions of collagen type I, collagen type III, and MMP-1 of Fb.

    Release date:2016-08-31 04:22 Export PDF Favorites Scan
  • EFFECTS OF NGF ON PROLIFERATION, MITOTIC CYCLE, COLLAGEN SYNTHESIS AND MIGRATION OF HUMAN DERMAL FIBROBLASTS IN VITRO

    Objective To investigate the effects of NGF on the prol iferation, mitotic cycle, collagen synthesis and migration of human dermal fibroblasts (HDFs), and to explore the function of NGF on the wound heal ing. Methods The 3rd generation of HDFs were incubated with various concentrations of NGF (0, 25, 50, 100, 200 and 400 ng/mL), the cell prol iferation was measured with MTT assay. After treated with NGF at 0, 100 ng/mL, the cell cycle of HDFs was determined by flow cytometry (FCM). Hydroxyprol ine and real-time fluorescence quantitative PCR (FQ-PCR) were used to measure collagen synthesis at protein level and mRNA level respectively. The in vitro cell scratch wound model was set up to observe the effect of NGF (0, 50, 100 and 200 ng/mL) on the migration of HDFs after 24 hours of culture. Results Absorbance value of HDFs for different concentrations of NGF (0, 25, 50, 100, 200, and 400 ng/ mL) showed that NGF did not influence the prol iferation of HDFs (P gt; 0.05). When HDFs were treated with NGF at 0 and 100 ng/mL, the result of FCM analysis showed that percentage of HDFs in G0/G1, S, G2/M phases were not changed (P gt; 0.05). Compared with control group, the expression of Col I and Col III were not significantly different, measured by both hydroxyprol ine and FQ-PCR (P gt; 0.05). The rates of HDFs’ migration at various concentrations of NGF (0, 50, 100, 200 ng/ mL) were 52.12% ± 6.50%, 80.67% ± 8.51%, 66.33% ± 3.58%, and 61.19% ± 0.97%, respectively, indicating that NGF could significantly enhanced the migration of HDFs at 50 and 100 ng/mL (P lt; 0.05). Conclusion NGF does not influence prol iferation, mitotic cycle and collagen synthesis of HDFs, but significantly enhanced migration in an in vitro model of wounded fibroblasts.

    Release date:2016-09-01 09:08 Export PDF Favorites Scan
  • RESEARCH ADVANCEMENT OF BONE MARROW DERIVED STEM CELL HETEROGENEITY AND ITS ROLE ININTESTINAL EPITHELIAL REPAIR

    Objective To summarize and review the heterogeneity of bone marrow derived stem cells (BMDSCs) and its formation mechanism and significance, and to analyze the possible roles and mechanisms in intestinal epithel ial reconstruction. Methods The related l iterature about BMDSCs heterogeneity and its role in intestinal epithel ial repair was reviewed and analyzed. Results The heterogeneity of BMDSCs provided better explanations for its multi-potency. The probable mechanisms of BMDSCs to repair intestinal epithel ium included direct implantation into intestinal epithel ium, fusion between BMDSCs and intestinal stem cells, and promotion of injury microcirculation reconstruction. Conclusion BMDSCs have a bright future in gastrointestinal injury caused by inflammatory bowl disease and regeneration.

    Release date:2016-09-01 09:17 Export PDF Favorites Scan
  • BIOCOMPATIBILITY STUDY ON TENDON MIXED EXTRACTION OF BOVINE COLLAGEN FOR PERIODONTAL TISSUE ENGINEERING

    Objective To study the biocompatibility of tendon mixedextraction of bovine collagen(tMEBC) and to explore the feasibility of using the threedimensional framework as periodontal tissue engineering scaffold. Methods After being prepared, the tMEBC were cultured with the P4P6 of human periodontal ligament fibroblasts (HPDLFs) in vitro. Threedimensional framework was prepared from bovine tendon. The P4-P6 of HPDLFs (with an initial density of 5×106 cells/ml) were cultured in vitro. Cell attachment andproliferation were measured by cell counting 1 day, 3,5, and 10 days after cell seeding. Histological examination was performed with light microscope and scanning electron microscope 5 and 10 days after cell seeding. Results Porous structure, which supported the proliferation and attachment of HPDLFs, was found in tMEBC. The density of cell increased from 0.556×104 cells/ml 24 hours after cell seeding to 3.944×104 cells/ml 10 days after seeding. Light and scanning electron microscope examinationindicated that HPDLFs were attached and extended on the three-dimensional scaffolds and were well embedded in the newly formed tissue matrix. ConclusiontMEBC has good biocompatibility with the HPDLFs, and can be used as scaffold for cell transplantation in periodontal tissue engineering.

    Release date:2016-09-01 09:29 Export PDF Favorites Scan
  • AUTOCRINE REGULATION FOR TRANSFORMING GROWTH FACTOR-β_1 BY FIBROBLAST IN VITRO

    OBJECTIVE: To explore the autocrine regulation for the transforming growth factor-beta 1(TGF-β1) by the fibroblasts in vitro. METHODS: Fibroblasts were cultured in vitro which isolated from the normal prepuce by circumcision. TGF-β1 concentration were determined with ELISA for the different passages and the different time at the same passage. RESULTS: The TGF-β1 concentration was different for the distinct passage of fibroblasts and achieved the peak (450 ng/L) at the sixth passage. Among the same fibroblasts, the TGF-β1 concentration was different in the various days and passage of the summit (680 ng/L) on the fifth day, which was 2.5 times as high as that of the first day. CONCLUSION: The fibroblasts possess the ability of autocrine of the TGF-β1 and have some regularity. It will provide the theory basis for the research about TGF-β1 regulation mechanism and the medical application about salvia miltiorrhiza.

    Release date:2016-09-01 10:14 Export PDF Favorites Scan
  • Protective Effects of Curcumin on Oxidative Stress-Induced Cell Injury in Human Fetal Lung Fibroblasts Co-cultured with A549 Cells and Its Mechanism

    Objective To investigate the effects of curcumin on oxidative stress in the co-culture system including human fetal lung fibroblasts and A549 cells, and discuss the potential and protective mechanism of the prophylactic effect of curcumin on pulmonary fibrosis. Methods The human fetal lung fibroblasts co-cultured with A549 cells were divided into five groups. The cells in the control group were cultured in DMEM without TGF-β1 or curcumin. The cells in the TGF-β1 group were cultured in DMEM containing 5 ng/mL TGF-β1 . In three TGF-β1 + cucurmin treatment groups, the cells were cultured in DMEM containing 5 ng/mL TGF-β1 and three different concentration of curcumin( 5, 10, 20 μmol /L, respectively) . ELISA was used to analyze the content of TNF-α. Serum level of MDA and SOD were tested by spectrophotometric analysis. Intracellular ROS production was detected by flow cytometry. NF-κB was measured by western blot. Results The serum MDA, intracellular ROS, the content of TNF-αand NF-κB protein expression in the TGF-β1 group were significantly increased while the activity of SOD was significantly decreased( P lt; 0. 01) , suggesting that the oxidative level of human fetal lung fibroblasts was obviously increased after TGF-β1 stimulation. After intervening by different concentration of curcumin, the serum MDA, intracellular ROS, content of TNF-αand NF-κB were significantly decreased while the activity of SOD was obviously increased( P lt;0.01) . Conclusion Low concentration of curcumin can reduce the oxidative level of human fetal lung fibroblasts co-cultured with A549 after TGF-β1 stimulation, and significantly increase the level of SOD, implying that curcumin may intervene pulmonary fibrosis by reduce oxidative level.

    Release date:2016-09-13 03:51 Export PDF Favorites Scan
  • Cancer Associated Fibroblasts and Its Role in The Evolution of Gastrointestinal Neoplasms

    ObjectiveTo review cancer associated fibroblasts(CAFs) and its role in the evolution of gastrointestinal neoplasms. MethodDomestic and international publications in relation to CAFs and its role in the evolution of gastrointestinal neoplasms were collected and reviewed. ResultsIn the gastrointestinal cancers, as the largest number and the most important stromal cells of the tumor microenvironment, CAFs induce the homeostasis of cell microenviron-ment out of balance, promote the remodeling of the tumor metabolism and extracellular matrix(ECM), and thus impulse the generation, proliferation, invasion and metastasis of the tumor by secreting different kinds of cytokines. ConclusionsThe key role CAFs playing in the tumor generation and evolution makes themselves and the multiple relatively specific molecules they secrete a new target for prognosis and targeted therapy, and this gives us a new idea for the combined treatment of gastrointestinal tumor or any other tumors.

    Release date: Export PDF Favorites Scan
  • Effect and Mechanism of The Breast Cancer Stromal Fibroblasts on Growth and Metastasis of MDA-MB-231 Cells Implanted Tumor

    ObjectiveTo explore effect and mechanism of the carcinoma associated fibroblasts (CAFs) of breast cancer on growth and metastasis of breast cancer induced in nude mice by inoculation of CAFs and breast cancer cells. MethodsBreast cancer cell line of MDA-MB-231 (abbreviated as MDA), CAFs, and normal breast tissue fibroblasts (NFs) of the same breast cancer patient were collected, and mixed with normal saline (NS) or SDF-1 ligand blockers of four nitrogen heterocyclic fourteen alka (AMD3100, abbreviated as AMD) for inoculation of nude mice in vivo. According to the different combination, 36 nude mice were randomly divided into 6 groups:MDA+NS group, NFs+NS group, MDA+NFs+NS group, MDA+NFs+AMD group, MDA+CAFs+AMD group, and MDA+CAFs+NS group. Forty six days after the inoculation and feeding, volume of tumor, metastasis of lymph node, lung or liver were observed. In addition, level of plasma SDF-1 was tested by using ELISA method, and expressions of SDF-1 mRNA and protein in tumor specimens were detected by using real-time PCR and Western blot method respectively. ResultsExcept for NFs+ NS group, implanted tumor could be seen in nude mice of other 5 groups. In MDA+CAFs+NS group, the volume of tumor[(9.092±2.662) cm3], level of plasma SDF-1[(75.25±16.23) ng/L], and expression levels of SDF-1 mRNA (the median level was 14.714) and protein (the median level was 0.673). of tumor tissue were significantly greater or higher than those of the other 5 groups (P < 0.050). In addition, lymph node metastasis were found in 4 mice in MDA+CAFs+NS group, and 2 in MDA+NS group. The tumor metastasis of lung and liver was not found in all nude mice. ConclusionsCAFs can promote growth and lymph node metastasis of breast cancer, whose mechanism is related with SDF-1 secreted by CAFs and SDF-1/CXC chemokine receptor 4 (CXCR4), signal pathway.

    Release date: Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content