west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "glial scar" 2 results
  • The role of glial scar on axonal regeneration after spinal cord injury

    The ‘glial scar’ has been widely studied in the regeneration of spinal cord injury (SCI). For decades, mainstream scientific concept considers glial scar as a ‘physical barrier’ to impede axonal regeneration after SCI. Moreover, some extracellular molecules produced by glial scar are also regarded as axonal growth inhibitors. With the development of technology and the progress of research, multiple lines of new evidence challenge the pre-existing traditional notions in SCI repair, including the role of glial scar. This review briefly reviewed the history, advance, and controversy of glial scar research in SCI repair since 1930s, hoping to recognize the roles of glial scar and crack the international problem of SCI regeneration.

    Release date:2018-07-30 05:33 Export PDF Favorites Scan
  • Effect and mechanism of glycyrrhizin on glial scar formation after spinal cord injury in rats

    ObjectiveTo explore the effect and potential mechanism of glycyrrhizin (GL) by inhibiting high mobility group box 1 (HMGB1) on glial scar formation after spinal cord injury (SCI) in rats.MethodsSeventy-two female Sprague Dawley rats were randomly divided into sham group (n=12), SCI model group (SCI group, n=36), GL intervention group (SCI+GL group, n=12), and nuclear factor κB (NF-κB) inhibitor [pynolidine dithiocarbamate (PDTC)] intervention group (SCI+PDTC group, n=12). The SCI models of SCI group, SCI+GL group, and SCI+PDTC group were made by modified Allen’s method, the sham group was only exposed the spinal cord without any injury. First of all, Basso-Beattie-Bresnahan (BBB) score of hind limbs and slope test were performed in SCI group at 1, 2, and 3 weeks after operation; Western blot was used to detect the expressions of glial fibrillary acidic protein (GFAP) and HMGB1 proteins. Compared with the sham group, the most significant time point in the SCI group was selected for subsequent experiment, in which the most significant glial scar was formed. Then, behavioral tests (BBB score of hind limbs and slope test), histological observation of spinal cord tissue structure, Western blot detection of HMGB1, GFAP, and NF-κB proteins, and immunohistochemical staining observation of GFAP and chondroitin sulfate proteoglycan (CSPG) were used to explore the effect of GL on the formation of glial scar after SCI and its potential mechanism.ResultsThe BBB score and slope angle of the SCI group increased gradually with time, which were significantly lower than those of the sham group at each time point (P<0.05). Western blot detection showed that the relative expressions of HMGB1 and GFAP proteins in the SCI group at 1, 2, and 3 weeks after operation were significantly higher than those in sham group (P<0.05). The change was most obvious at 3 weeks after SCI, therefore the spinal cord tissue was selected for subsequent experiments at this time point. At 3 weeks after operation, compared with the SCI group, BBB score and slope angle of SCI+GL group significantly increased (P<0.05); the relative expressions of HMGB1, GFAP, and NF-κB proteins detected by Western blot and the expressions of GFAP and CSPG proteins detected by immunohistochemical staining significantly decreased (P<0.05); the disorder of spinal cord tissue by HE staining improved, inflammatory cell infiltration reduced, and glial scar formation decreased. At 3 weeks after operation, the expressions of NF-κB, GFAP, and CSPG proteins of the SCI+PDTC group significantly reduced when compared with the SCI group (P<0.05); and the expression of NF-κB protein significantly decreased and the expressions of GFAP and CSPG proteins significantly increased when compared with the SCI+GL group (P<0.05).ConclusionAfter SCI in rats, the application of GL to inhibit the expression of HMGB1 can reduce the expression of GFAP and CSPG in the injured spinal cord, then reduce the formation of glial scars and promote the recovery of motor function of the hind limbs, and GL may play a role in inhibiting glial scar through HMGB1/NF-κB pathway.

    Release date:2020-11-02 06:24 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content