west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "hVEGF165" 6 results
  • INFLUENCE OF LIPOSOME-MEDIATED RECOMBINANT PLASMID pIRES-hBMP-2-hVEGF165 ON OSTEOGENIC ACTIVITY OF hBMSCs IN VITRO

    Objective To investigate the effects of the recombinant plasmid pIRES-hBMP-2-hVEGF165 on differentiation and maturation of hBMSCs in vitro. Methods The co-expressing vector of hBMP-2 and hVEGF165 was constructed. The BMSCs were isolated and cultured from health adult human denoted marrow. By the l ipofection method, the reconstructed plasmids pIRES-hBMP-2-hVEGF165, pIRES-hBMP-2, pIRES-hVEGF165 and pIRES neo empty vector, weretransfected to hBMSCs (groups A, B, C and D). The untransfected cells were harvested as control group (group E). After4 weeks of culture, RT-PCR was employed to assay the hBMP-2, hVEGF165 and osteocalcin mRNA expression in hBMSCs. The expressions of hBMP-2 and hVEGF165 of BMSCs were assayed by Western blot. The level of ALP activities of BMSCs was determined. Col I was also determined by immunohistochemical staining. Results Compared to group E, the hBMSCs in group A secreted high level of hBMP-2, hVEGF165, Col I and osteocalcin; osteocalcin and Col I expressed at high level in group B, and hVEGF165 expressed at high level in group C. Otherwise, the expression of hVEGF165 in group B and the expressions of hBMP-2 and Col I in group C resemble to that of groups D and E, no expression or few expression was observed. The activities of ALP in groups A, B, C, D and E were 0.91 ± 0.03, 0.90 ± 0.02, 0.64 ± 0.03, 0.67 ± 0.01 and 0.66 ± 0.02, respectively. The activity of ALP of groups A and B were significantly increased compared with that of group E (P lt; 0.05); there was no significant difference among groups C, D and E (P gt; 0.05). Conclusion The recombinant plasmid pIRES-hBMP-2-hVEGF165 can be successfully transfected into BMSCs with cation l iposome-mediated transfection method, the exogenous hBMP-2 and hVEGF165 genes can be expressed constitutively in the transfected BMSCs, and it can enhance the differentiation abil ities of BMSCs.

    Release date:2016-09-01 09:08 Export PDF Favorites Scan
  • TRANSFECTION OF HUMAN VASCULAR ENDOTHELIAL GROWTH FACTOR 165 GENE INTO RAT BONE MARROW MESENCHYMAL STEM CELLS IN VITRO

    Objective To construct a recombinant adenovirus vector containing human vascular endothelial growth factor 165 (hVEGF165) [pAdxsi-enhanced green fluorescent protein (EGFP)-hVEGF165], and to observe the expression ofhVEGF165 by transfecting pAdxsi-EGFP-hVEGF165 into rat bone marrow mesenchymal stem cells (BMSCs) in vitro so as to lay a foundation for further research on gene therapy of blood vessel regeneration. Methods hVEGF165 was l iberated from plasmid and was subcloned into pShuttle-EGFP. The pShuttle-cytomegalo-virus-EGFP was then transferred to pAdxsi vector, by which pAdxsi-EGFP-hVEGF165 virus plasmid was obtained and was identified by enzymes restriction analysis and gene sequencing. The pAdxsi-EGFP-hVEGF165 was l inearized by digestion with restriction endonuclease PacI, and was then transfected into human embryonic kidney cells (HEK293). The retrieved recombinant adenovirus was titrated by using 50% tissue culture infective dose assay. The rat BMSCs were cultured and were infected with recombinant adenovirus containing EGFP (pAdxsi-EGFP). The multipl icities of infection (MOI) of transfection were determined by fluorescent inverted phase contrast microscope and flow cytometry (FCM), by which the most optimal value of MOI was confirmed and was used for transfecting pAdxsi-EGFP-hVEGF165 into BMSCs. The expression of hVEGF165 gene was indentified by performing Western blot, RT-PCR, and ELISA. The effect of transfection on BMSCs prol iferation was assessed by MTT. Results The expression of hVEGF165 cDNA in recombinant adenovirus plasmid was indentified by enzymes restriction analysis and gene sequencing. The titer of virus could be up to 1 ×1010 pfu/mL after several rounds of transfection and ampl ification. The efficiency of transfection on FCM was 88% when MOI being 150 pfu/ cell, at which the most optimal of MOI was achieved, as observed on fluorescence. The expressions of hVEGF165 at both mRNA and protein levels were detected after 48 hours of the transfection. The results of ELISA showed the expression ofhVEGF165 peaked at 7 days, and the production was found even after 20 days. Furthermore, the expression of hVEGF165 protein at 1, 3, 5, 7, 9, 11, 13, 15, and 20 days in the group transfected with pAdxsi-EGFP-hVEGF165 was significantly higher than that in the group transfected with pAdxsi-EGFP and in untransfected group (P lt; 0.05). The results of MTT demonstrated that here was no significant difference in absorbance (A) value between transfected with pAdxsi-EGFP-hVEGF165 group and untransfected group (P gt; 0.05). Conclusion BMSCs are suitable for gene transfection, and hVEGF165 gene can be transferred into BMSCs with high efficiency using pAdxsi-EGFP-hVEGF165 at a MOI of 150 pfu/cell. The transfected BMSCs can highly express hVEGF165, which has no effect on BMSCs growth and prol iferation.

    Release date:2016-08-31 05:42 Export PDF Favorites Scan
  • A EXPERIMENTAL STUDY ON TRANSFECTING HUMAN STROMAL CELL-DERIVED FACTOR 1α AND HUMAN VASCULAR ENDOTHELIAL GROWTH FACTOR 165 GENES INTO MYOBLASTS IN VIRTO

    Objective To explore the human stromal cell-derived factor 1α (hSDF-1α) and human vascular endothel ial growth factor 165 (hVEGF165) mRNA expressions of the transfected cells after hSDF-1α gene and hVEGF165 gene were transfected into rat myoblasts in vitro so as to lay a foundation for further study on the synergistic effects of 2 genes on tissue engineered skeletal muscle vascularization. Methods The myoblasts of 1-day-old Sprague Dawley rats were cultured and purified by trypsin digestion assay in vitro and were identified by immunohistochemistry staining of Desmin. pproximately 70%-80% of confluent myoblasts were transfected with enhanced green fluorescent protein (EGFP)-hSDF-1α and EGFP-hVEGF165 genes in vitro (transfected group) and were not transfected (control group). The expressions of hSDF-1αand hVEGF165 mRNA and protein in the transfected cells were detected by RT-PCR, ELISA, and Western blot espectively.Results The cultured cells were identified as myoblasts by immunohistochemistry staining of Desmin. The expression ofgreen fluorescent protein was observed in transfected cells, indicating that hSDF-1α and hVEGF165 genes were transfected into myoblasts successfully. The mRNA and protein expressions of the 2 genes were positive in the transfected group by RT-PCR and Western bolt assay at 2, 4, 6, and 8 days after transfection, and were negative in the control group. The expressions of hSDF- 1α and hVEGF165 showed a stable low level in the control group, but the expressions of the proteins increased at 2 days and then showed gradual downtrend with time in the transfected group by ELISA assay. There were significant differences in the expressions of hSDF-1α and hVEGF165 proteins between different time points in the transfected group, and between 2 groups (P lt; 0.05). Conclusion hSDF-1α and hVEGF165 genes are successfully transfected into myoblasts in vitro, and mRNA and proteins of hSDF-1α and hVEGF165 can be expressed in the transfected myoblasts, which may provide the experimental evidence for the expressions of hSDF-1α and hVEGF165 mRNA and proteins in vivo successfully.

    Release date:2016-08-31 05:42 Export PDF Favorites Scan
  • STUDY ON BIOLOGICAL ACTIVITY OF RECOMBINANT ADENO-ASSOCIATED VIRUS VECTOR COEXPRESSINGHUMAN VASCULAR ENDOTHELIAL GROWTH FACTOR 165 AND HUMAN BONE MORPHOGENETIC PROTEIN 7 GENES IN VITRO

    Objective To study the biological activity of recombinant adeno-associated virus vector (rAAV) coexpressing human vascular endothel ial growth factor165 (hVEGF165) and human bone morphogenetic protein 7 (hBMP-7) genes in vitro so as to provide a new method for the therapeutics of osteonecrosis. Methods The 3rd passage rabbit bone marrow mesenchymal stem cells (BMSCs) were transfected with rAAV-hVEGF165-internal ribosome entry site (IRES)-hBMP-7(experimental group) and green fluorescent protein (GFP) labeled rAAV-IRES-GFP (control group). The expressions ofhVEGF165 and hBMP-7 were detected by ELISA assay at the 1st, 2nd, 3rd, 7th, 14th days and Western blot assay at the14th day after transfection. The expression consistencies of hVEGF165 and hBMP-7 were observed by immunofluorescence assay at the 14th day after transfection. The biological activity of hVEGF165 was assessed by angiopoiesis experiment of the 3rd passage human umbil ical vein endothel ial cells (HUVEC). The biological activity of hBMP-7 was assessed by mineral ization of BMSCs detected by ALP staining and al izarin red staining. Results With infecting time, the hVEGF165 and hBMP-7 expressions increased gradually in two groups, showing significant difference between two groups (P lt; 0.05). The expressions of hVEGF165 and hBMP-7 were positive in experimental group and negative in control group, respectively. Immunofluorescence assay showed positive expressions of hVEGF165 and hBMP-7 in the exprimental group and negative expression in the control group, the expression of hVEGF165 and hBMP-7 had good consistencies. hVEGF165 secreted from BMSCs enhanced HUVEC migration, prol iferation and tube formation in experimental group. There was significant difference in the number of blood vessel between two groups (P lt; 0.05). The ALP staining showed more bly stained granules in experimental group than in control group. There was significant difference in the number of the mineral ized nodules between two groups (P lt; 0.05). Conclusion The rAAV-hVEGF165-IRES-hBMP-7 has good biological activity in vitro.

    Release date:2016-08-31 05:47 Export PDF Favorites Scan
  • STUDY ON TIME EFFECT OF GENE EXPRESSION OF RECOMBINANT ADENO-ASSOCIATED VIRUS VECTOR CO-EXPRESSING HUMAN VASCULAR ENDOTHELIAL GROWTH FACTOR 165 AND HUMAN BONE MORPHOGENETIC PROTEIN 7 GENES

    Objective To study the time effect of the gene expression of recombinant adeno-associated virus (rAAV) vector co-expressing human vascular endothel ial growth factor 165 (hVEGF165) and human bone morphogenetic protein 7 (hBMP-7) genes so as to lay a theoretical foundation for gene therapy of osteonecrosis. Methods The best multipl icity of infection (MOI) of BMSCs transfected with rAAV was detected by fluorescent cell counting. The 3rd generation rabbit bone mesenchymal stem cells (BMSCs) were transfected with rAAV-hVEGF165-internal ribosome entry site (IRES)-hBMP-7 (experimental group) and green fluorescent protein (GFP) labeled rAAV-IRES-GFP (control group), respectively. The expression of GFP was observed by inverted fluorescent microscope. The expressions of hVEGF165 and hBMP-7 were assessed by RT-PCR assay and Western blot assay in vitro. The transfected cells in 2 groups were prepared into suspension with 5 × 106 cells/mL, and injected into the rabbit thigh muscles of experimental group 1 (n=9) and control group 1 (n=9), respectively. The muscle injected with rAAV-IRES-GFP was sl iced by frozen section method and the expression of GFP protein was observed by inverted fluorescent microscope. The expressions of hVEGF165 and hBMP-7 were assessed by Western blot assay and ELISA assay in vivo. Results The best MOI of BMSCs transfected with rAAV was 5 × 104 v.g/cell. In vitro, the expressions of GFP, hVEGF165, and hBMP-7 genes started at 1 day after transfection, the expressions obviously increased at 14 days after transfection, and the expression maintained the b level at 28 days after transfection. In vivo, the expressions of GFP, hVEGF165, and hBMP-7 genes could be detected at 2 weeks after injection, and b expressions were shown at 6 to 8 weeks after injection. The values of hVEGF165 and hBMP-7 were (248.67 ± 75.58) pg/mL and (4.80 ± 0.61) ng/mL respectively in experimental group 1, and were (32.28 ± 8.42) pg/mL and (0.64 ± 0.42) ng/mL respectively in control group 1; showing significant differences between 2 groups (P lt; 0.05). Conclusion The rAAV-hVEGF165-IRES-hBMP-7 has efficient gene expression ability.

    Release date:2016-08-31 05:49 Export PDF Favorites Scan
  • STUDY ON EFFECT OF RECOMBINANT ADENO-ASSOCIATED VIRUS VECTOR CO-EXPRESSING HUMAN VASCULAR ENDOTHELIAL GROWTH FACTOR 165 AND HUMAN BONE MORPHOGENETIC PROTEIN 7 GENES ON BONE REGENERATION AND ANGIOPOIESIS IN VIVO

    Objective To study the effect of recombinant adeno-associated virus (rAAV) vector co-expressing human vascular endothel ial growth factor 165 (hVEGF165) and human bone morphogenetic protein 7 (hBMP-7) genes on bone regeneration and angiopoiesis in vivo so as to provide a theoretical basis for the gene therapy of avascular necrosis of thefemoral head (ANFH). Methods Twenty-four male adult New Zealand rabbits were made the ischemic hind l imb model and divided into 4 groups (n=6). The 3rd generation rabbit bone marrow mesenchymal stem cells (BMSCs) were transfected with the following 4 virus and were administered intramuscularly into the ischemic thigh muscle of 4 groups, respectively: rAAVhVEGF165- internal ribosome entry site (IRES)-hBMP-7 (group A), rAAV-hVEGF165-green fluorescent protein (GFP) (group B), rAAV-hBMP-7-GFP (group C), and rAAV-IRES-GFP (group D). At 8 weeks after injection, the blood flow of anterior tibial artery in the rabbit hind l imb was detected by ultrasonographic image. Immunohistochemical staining for CD34 was performed to identify the prol iferation of capillary. Another 24 male adult New Zealand rabbits were made the femur muscle pouch model and divided into 4 groups (n=6). The above 4 BMSCs transfected with rAAV were administered intramuscularly into the muscle pouch. At 8 weeks after injection, X-ray radiography was used to assess orthotopic bone formation, and von Kossa staining to show mineral ization. Results No symptoms of local or systemic toxicity were observed after rAAV injection. At 8 weeks after injection, the ratio of ischemic to normal blood flow and the number of capillaries in group A were the highest among 4 groups (P lt; 0.05). The ratio of ischemic to normal blood flow and the number of capillaries in group B were significantly higher than those in group C and group D (P lt; 0.05). However, there was no significant difference between group C and group D (P gt; 0.05). At 8 weeks after injection, orthotopic ossification and mineral ization were evidently detected in group A and group C, and group A was ber than group C. No obvious evidence of orthotopic ossification and mineral ization were observed in group B and group D. Conclusion rAAV-hVEGF165-IRES-hBMP-7 vector has the biological activities of inductive bone regeneration and angiopoiesis in vivo.

    Release date:2016-09-01 09:04 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content